Der Nuklearmediziner 2009; 32(2): 170-177
DOI: 10.1055/s-0028-1128137
Nicht-FDG-PET

© Georg Thieme Verlag KG Stuttgart · New York

Amyloidplaque-Bildgebung in der Demenzdiagnostik

Amyloid-Plaque Imaging in Diagnosis of DementiaA. Drzezga 1
  • 1Nuklearmedizinische Klinik, Klinikum rechts der Isar, Technische Universität, München
Further Information

Publication History

Publication Date:
22 June 2009 (online)

Zusammenfassung

Die steigende Lebenserwartung der modernen Gesellschaft resultiert in einer stetig wachsenden Zahl an Patienten mit Demenzerkrankungen, insbesondere der Alzheimer-Demenz (AD). Dies hat neben den Folgen für die betroffenen Patienten und ihre Angehörigen auch besorgniserregende sozioökonomische Konsequenzen. Diese Tatsachen haben in den letzten Jahren vermehrte Anstrengungen bedingt, die Ursachen der Demenzerkrankungen besser aufzuklären und therapeutische Interventionsmöglichkeiten zu identifizieren. Viele Hinweise deuten darauf hin, dass am Anfang des Erkrankungsprozesses vieler neurodegenerativer Erkrankungen die vermehrte Produktion spezifischer Proteine und deren pathologische Ablagerung im Gehirn steht. Unter den bekanntesten Vertretern dieser pathologischen Proteinablagerungen sind die sogenannten Amyloidplaques, die durch Aggregation des ß-Amyloidproteins im Gehirn entstehen und als histopathologisches Kernmerkmal der Alzheimer Erkrankung gelten. Der Amyloidpathologie wird eine mögliche kausale Rolle in der Entwicklung der Alzheimer-Demenz zugesprochen und verschiedene moderne Therapieansätze sind daher auf diese Pathologie ausgerichtet. Die limitierte Zugänglichkeit des Gehirngewebes hat bisher bedingt, dass eine sichere Diagnose der AD primär nur post mortem durch den histopathologischen Nachweis der Amyloidplaques in Analysen des Gehirngewebes gestellt werden konnte. Aus dem identischen Grund konnten bisher Zusammenhänge zwischen Ausmaß der Amyloidplaque-Ablagerungen und klinischem Verlauf nicht sicher etabliert werden. Gerade die Option neuer therapeutischer Ansätze bedingt aber die Notwendigkeit einer zuverlässigen In-vivo-Diagnostik, um möglichst frühzeitig und gezielt mit Therapien beginnen zu können. Mit modernen Tracern wie dem [11C]PIB stehen nun erstmals Methoden der molekularen Bildgebung zur Verfügung die es ermöglichen, mit der PositronenEmissions-Tomografie (PET) Amyloidplaque-Ablagerungen im Gehirn in vivo nachzuweisen. Diese Methoden eröffnen die Möglichkeit, neurodegenerative Demenzerkrankungen auf der Basis der zugrunde liegenden Pathologie zu charakterisieren, anstelle der rein klinisch-symptomatischen Diagnostik. Diese Art der „In-vivo-Histopathologie” hat das Potenzial, die Früh- und Differenzialdiagnostik der Demenzerkrankungen zu optimieren und könnte als wertvolles Werkzeug für die Patientenselektion für Therapiestudien und für eine objektive Therapiekontrolle dienen.

Abstract

The increasing life-expectancy of our society results in a continuously growing number of patients suffering from dementing disorders, particularly Alzheimer's disease (AD). Apart from the deleterious consequences for the patients and their relatives, this has also alarming effects on our social systems. These facts have justified increased scientific efforts regarding the identification of basic pathomechanisms of dementia and the development of new treatment options. Increased production of specific proteins and their pathologic aggregation in the brain appears to be a pathomechanism which occurs early in the course of many different neurodegenerative disorders. Among the most well-known of these protein aggregations are the amyloid-plaques, which arise from the aggregation of the ß-amyloid protein. Currently, this amyloid-aggregation pathology is regarded as a key pathology, playing a causal role in the development of AD. Consequently, modern therapy approaches are directed towards this target. Limited access to brain tissue has so far restricted the definite diagnosis of AD to post mortem histopathological assessment of brain tissue. For the same reason, a clear association between extent of amyloid deposition pathology and clinical course of AD has not been established so far. However, particularly with regard to new therapeutic options a reliable in vivo diagnosis is required. Modern molecular imaging tracers such as [11C]PIB do now open the possibility to visualize amyloid-depositions in vivo, using Positron Emission Tomography (PET). These techniques allow the characterization of dementing disorders on the basis of the underlying pathology rather than on their symptomatic appearance. This type of “in vivo histopathology”-approach may offer improved options for early and differential diagnosis, as well as for patient selection for therapy trials and for objective therapy monitoring.

Literatur

  • 1 Alafuzoff I. The pathology of dementias: an overview.  Acta Neurol Scand Suppl. 1992;  139 8-15
  • 2 Bacskai BJ. et al . Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report.  Arch Neurol. 2007;  64 431-434
  • 3 Bickel H. Dementia syndrome and Alzheimer disease: an assessment of morbidity and annual incidence in Germany.  Gesundheitswesen. 2000;  62 211-218
  • 4 Boyle PA. et al . Mild cognitive impairment: risk of Alzheimer disease and rate of cognitive decline.  Neurology. 2006;  67 441-445
  • 5 Davies R. et al . The pathological basis of semantic dementia.  Brain. 2005;  128 ((Pt 9)) 1984-1995
  • 6 Drzezga A. et al . Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer's disease.  Neuroimage. 2008;  39 619-633
  • 7 Engler H. et al . Two-year follow-up of amyloid deposition in patients with Alzheimer's disease.  Brain. 2006; 
  • 8 Engler H. et al . In vivo amyloid imaging with PET in frontotemporal dementia.  Eur J Nucl Med Mol Imaging. 2007; 
  • 9 Fodero-Tavoletti MT. et al . In vitro characterization of Pittsburgh compound-B binding to Lewy bodies.  J Neurosci. 2007;  27 10365-10371
  • 10 Forsberg A. et al . PET imaging of amyloid deposition in patients with mild cognitive impairment.  Neurobiol Aging. 2007; 
  • 11 Forstl H, Kurz A. Clinical features of Alzheimer's disease.  Eur Arch Psychiatry Clin Neurosci. 1999;  249 288-290
  • 12 Gomperts SN. et al . Imaging amyloid deposition in Lewy body diseases.  Neurology. 2008;  71 903-910
  • 13 Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis.  Science. 1992;  256 ((5054)) 184-185
  • 14 Hebert LE. et al . Alzheimer disease in the US population: prevalence estimates using the 2000 census.  Arch Neurol. 2003;  60 ((8)) 1119-1122
  • 15 Henriksen G. et al . Development and evaluation of compounds for imaging of beta-amyloid plaque by means of positron emission tomography.  Eur J Nucl Med Mol Imaging. 2008;  35 ((Suppl 1)) S75-S81
  • 16 Hull M, Berger M, Heneka M. Disease-modifying therapies in Alzheimer's disease: how far have we come?.  Drugs. 2006;  66 2075-2093
  • 17 Ikeda M, Ishikawa T, Tanabe H. Epidemiology of frontotemporal lobar degeneration.  Dement Geriatr Cogn Disord. 2004;  17 265-268
  • 18 Ikonomovic MD. et al . Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease.  Brain. 2008;  131 ((Pt 6)) 1630-1645
  • 19  . , Informationsblatt, Deutsche Alzheimer Gesellschaft: Das Wichtigste 1 – Die Epidemiologie der Demenz, Stand 06/2008
  • 20 Johnson JK. et al . Frontotemporal lobar degeneration: demographic characteristics of 353 patients.  Arch Neurol. 2005;  62 925-930
  • 21 Johnson KA. et al . Imaging of amyloid burden and distribution in cerebral amyloid angiopathy.  Ann Neurol. 2007;  62 229-234
  • 22 Klunk WE. et al . Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B.  Ann Neurol. 2004;  55 306-319
  • 23 Leinonen V. et al . Assessment of beta-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled Pittsburgh Compound B.  Arch Neurol. 2008;  65 1304-1309
  • 24 Lockhart A. et al . PIB is a non-specific imaging marker of amyloid-beta (Abeta) peptide-related cerebral amyloidosis.  Brain. 2007;  130 ((Pt 10)) 2607-2615
  • 25 McKeith I. et al . Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study.  Lancet Neurol. 2007;  6 305-313
  • 26 McKhann G. et al . Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease.  Neurology. 1984;  34 939-944
  • 27 Mintun MA. et al . [11C]PIB in a nondemented population: poten-tial antecedent marker of Alzheimer disease.  Neurology. 2006;  67 446-452
  • 28 Neumann M. et al . Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.  Science. 2006;  314 ((5796)) 130-133
  • 29 Ng S. et al . Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer's disease.  J Nucl Med. 2007;  48 547-552
  • 30 Petersen RC. Mild cognitive impairment as a diagnostic entity.  J Intern Med. 2004;  256 183-194
  • 31 Pike K. et al . Beta-amyloid imaging and memory in a large cohort of elderly individuals.  J Nucl Med Meeting Abstracts. 2008;  49 ((MeetingAbstracts_1)) 33P-c-
  • 32 Price JC. et al . Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B.  J Cereb Blood Flow Metab. 2005;  25 1528-1547
  • 33 Rabinovici GD. et al . Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia.  Ann Neurol. 2008;  64 388-401
  • 34 Remes AM. et al . Carbon 11-labeled pittsburgh compound B positron emission tomographic amyloid imaging in patients with APP locus duplication.  Arch Neurol. 2008;  65 540-544
  • 35 Rowe CC. et al . Imaging beta-amyloid burden in aging and dementia.  Neurology. 2007;  68 1718-1725
  • 36 Sadowski M. et al . Links between the pathology of Alzheimer's disease and vascular dementia.  Neurochem Res. 2004;  29 1257-1266
  • 37 Selkoe D. Folding proteins in fatal ways.  Nature. 2003;  426 ((6968)) 900-904
  • 38 Selkoe D. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior.  Behav Brain Res. 2008;  192 106-113
  • 39 Shi J. et al . Histopathological changes underlying frontotemporal lobar degeneration with clinicopathological correlation.  Acta Neuropathol (Berl). 2005;  110 501-512
  • 40 Shoghi-Jadid K. et al . Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease.  Am J Geriatr Psychiatry. 2002;  10 24-35
  • 41 Silverman DH. et al . Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome.  Jama. 2001;  286 2120-2127
  • 42 Small GW. et al . PET of brain amyloid and tau in mild cognitive impairment.  N Engl J Med. 2006;  355 2652-2663
  • 43 Snowden JS. Semantic dysfunction in frontotemporal lobar degeneration.  Dement Geriatr Cogn Disord. 1999;  10 ((Suppl 1)) 33-36
  • 44 Weisman D. et al . In dementia with Lewy bodies, Braak stage determines phenotype, not Lewy body distribution.  Neurology. 2007;  69 356-359
  • 45 Zaccai J, McCracken C, Brayne C. A systematic review of prevalence and incidence studies of dementia with Lewy bodies.  Age Ageing. 2005;  34 561-566

Korrespondenzadresse

PD Dr. A. Drzezga

Nuklearmedizinische Klinik

Klinikum rechts der Isar der

Technischen Universität München

Ismaninger Str. 22

81675 München

Phone: +49/89/4140 29 71

Fax: +49/89/4140 48 41

Email: a.drzezga@lrz.tu-muenchen.de

    >