Subscribe to RSS
DOI: 10.1055/s-0029-1192044
© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York
Adipose Tissue Dysfunction in Obesity
Publication History
received 10.12.2008
first decision 08.01.2009
accepted 08.01.2009
Publication Date:
08 April 2009 (online)

Abstract
The incidence of obesity has increased dramatically during recent decades. Obesity will cause a decline in life expectancy for the first time in recent history due to numerous co-morbid disorders. Adipocyte and adipose tissue dysfunction belong to the primary defects in obesity and may link obesity to several health problems including increased risk of insulin resistance, type 2 diabetes, fatty liver disease, hypertension, dyslipidemia, atherosclerosis, dementia, airway disease and some cancers. However, not all obese individuals develop obesity related metabolic or cardiovascular disorders potentially due to a preserved normal adipose tissue architecture and function. The majority of patients with obesity have an impaired adipose tissue function caused by the interaction of genetic and environmental factors which lead to adipocyte hypertrophy, hypoxia, a variety of stresses and inflammatory processes within adipose tissue. Ectopic fat accumulation including visceral obesity may be considered as a consequence of adipose tissue dysfunction, which is further characterized by changes in the cellular composition, increased lipid storage and impaired insulin sensitivity in adipocytes, and secretion of a proinflammatory, atherogenic, and diabetogenic adipokine pattern. This review focuses on the discussion of mechanisms causing or maintaining impaired adipose tissue function in obesity and potentially linking obesity to its associated disorders. A model is proposed how different pathogenic factors and mechanisms may cause dysfunction of adipose tissue.
Key words
obesity - visceral fat - adipose tissue dysfunction - insulin resistance - adipocyte - adipokines - inflammation
References
- 1
Arner P.
Differences in lipolysis between human subcutaneous and omental adipose tissues.
Ann Med.
1995;
27
435-438
MissingFormLabel
- 2
Basat O, Ucak S, Ozkurt H. et al .
Visceral adipose tissue as an indicator of insulin resistance in nonobese patients
with new onset type 2 diabetes mellitus.
Exp Clin Endocrinol Diabetes.
2006;
114
58-62
MissingFormLabel
- 3
Bashan N, Dorfman K, Tarnovscki T. et al .
Mitogen-activated protein kinases, inhibitory-kappaB kinase, and insulin signaling
in human omental versus subcutaneous adipose tissue in obesity.
Endocrinology.
2007;
148
2955-2962
MissingFormLabel
- 4
Berndt J, Kralisch S, Klöting N. et al .
Adipose triglyceride lipase gene expression in human visceral obesity.
Exp Clin Endocrinol Diabetes.
2008;
116
203-210
MissingFormLabel
- 5
Blüher M.
The inflammatory process of adipose tissue.
Pediatr Endocrinol Rev.
2008;
6
24-31
MissingFormLabel
- 6
Blüher M, Fasshauer M, Tönjes A. et al .
Association of interleukin-6, C-reactive protein, interleukin-10 and adiponectin plasma
concentrations with measures of obesity, insulin sensitivity and glucose metabolism.
Exp Clin Endocrinol Diabetes.
2005;
113
534-537
MissingFormLabel
- 7
Blüher M, Kahn BB, Kahn CR.
Extended longevity in mice lacking the insulin receptor in adipose tissue.
Science.
2003;
299
572-574
MissingFormLabel
- 8
Blüher M, Michael MD, Peroni OD. et al .
Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related
glucose intolerance.
Dev Cell.
2002;
3
25-38
MissingFormLabel
- 9
Blüher M, Wilson-Fritch L, Leszyk J. et al .
Role of insulin action and cell size on protein expression patterns in adipocytes.
J Biol Chem.
2004;
279
31902-31909
MissingFormLabel
- 10
Boden G.
Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin
resistance and type 2 diabetes.
Exp Clin Endocrinol Diabetes.
2003;
111
121-124
MissingFormLabel
- 11
Bornstein SR, Ehrhart-Bornstein M, Wong ML. et al .
Is the worldwide epidemic of obesity a communicable feature of globalization?.
Exp Clin Endocrinol Diabetes.
2008;
116
S30-S32
MissingFormLabel
- 12
Boschmann M, Engeli S, Adams F. et al .
Adipose tissue metabolism and CD11b expression on monocytes in obese hypertensives.
Hypertension.
2005;
46
130-136
MissingFormLabel
- 13
Bourlier V, Zakaroff-Girard A, Miranville A. et al .
Remodeling phenotype of human subcutaneous adipose tissue macrophages.
Circulation.
2008;
117
806-815
MissingFormLabel
- 14
Böttcher Y, Teupser D, Enigk B. et al .
Genetic variation in the visfatin gene (PBEF1) and its relation to glucose metabolism
and fat-depot-specific messenger ribonucleic acid expression in humans.
J Clin Endocrinol Metab.
2006;
91
2725-2731
MissingFormLabel
- 15
Cancello R, Clément K.
Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage
infiltration in human white adipose tissue.
BJOG.
2006;
113
1141-1147
MissingFormLabel
- 16
Cancello R, Henegar C, Viguerie N. et al .
Reduction of macrophage infiltration and chemoattractant gene expression changes in
white adipose tissue of morbidly obese subjects after surgery-induced weight loss.
Diabetes.
2005;
54
2277-2286
MissingFormLabel
- 17
Cancello R, Tordjman J, Poitou C. et al .
Increased infiltration of macrophages in omental adipose tissue is associated with
marked hepatic lesions in morbid human obesity.
Diabetes.
2006;
55
1554-1561
MissingFormLabel
- 18
Carlsson E, Fredriksson J, Groop L. et al .
Variation in the calpain-10 gene is associated with elevated triglyceride levels and
reduced adipose tissue messenger ribonucleic acid expression in obese Swedish subjects.
J Clin Endocrinol Metab.
2004;
89
3601-3605
MissingFormLabel
- 19
Cinti S, Mitchell G, Barbatelli G. et al .
Adipocyte death defines macrophage localization and function in adipose tissue of
obese mice and humans.
J Lipid Res.
2005;
46
2347-2355
MissingFormLabel
- 20
Curat CA, Miranville A, Sengenès C. et al .
From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis
by human mature adipocytes.
Diabetes.
2004;
53
1285-1292
MissingFormLabel
- 21
Dina C, Meyre D, Gallina S. et al .
Variation in FTO contributes to childhood obesity and severe adult obesity.
Nat Genet.
2007;
39
724-726
MissingFormLabel
- 22
Dubois SG, Heilbronn LK, Smith SR. et al .
Decreased expression of adipogenic genes in obese subjects with type 2 diabetes.
Obesity (Silver Spring).
2006;
14
1543-1552
MissingFormLabel
- 23
Eizirik DL, Cardozo AK, Cnop M.
The role for endoplasmic reticulum stress in diabetes mellitus.
Endocr Rev.
2008;
29
42-61
MissingFormLabel
- 24
Elbein SC, Chu WS, Das SK. et al .
Transcription factor 7-like 2 polymorphisms and type 2 diabetes, glucose homeostasis
traits and gene expression in US participants of European and African descent.
Diabetologia.
2007;
50
1621-1630
MissingFormLabel
- 25
Engeli S.
Dysregulation of the endocannabinoid system in obesity.
J Neuroendocrinol.
2008;
20
110-115
MissingFormLabel
- 26
Engeli S, Jordan J.
The endocannabinoid system: body weight and metabolic regulation.
Clin Cornerstone.
2006;
8
S24-S35
MissingFormLabel
- 27
Ersek RA, Bell
4th
HN, Salisbury AV.
Serial and superficial suction for steatopygia (Hottentot bustle).
Aesthetic Plast Surg.
1994;
18
279-282
MissingFormLabel
- 28
Esterbauer H, Schneitler C, Oberkofler H. et al .
A common polymorphism in the promoter of UCP2 is associated with decreased risk of
obesity in middle-aged humans.
Nat Genet.
2001;
28
178-183
MissingFormLabel
- 29
Farooqi S, O’Rahilly S.
Genetics of obesity in humans.
Endocr Rev.
2006;
27
710-718
MissingFormLabel
- 30
Fleischmann E, Kurz A, Niedermayr M. et al .
Tissue oxygenation in obese and non-obese patients during laparoscopy.
Obes Surg.
2005;
15
813-819
MissingFormLabel
- 31
Frayling TM, Timpson NJ, Weedon MN. et al .
A common variant in the FTO gene is associated with body mass index and predisposes
to childhood and adult obesity.
Science.
2007;
316
889-894
MissingFormLabel
- 32
Frayn KN.
Visceral fat and insulin resistance – causative or correlative?.
Br J Nutr.
2000;
83
S71-S77
MissingFormLabel
- 33
Garg A, Misra A.
Lipodystrophies: rare disorders causing metabolic syndrome.
Endocrinol Metab Clin North Am.
2004;
33
305-331
MissingFormLabel
- 34
Garg A, Peshock RM, Fleckenstein JL.
Adipose tissue distribution pattern in patients with familial partial lipodystrophy
(Dunnigan variety).
J Clin Endocrinol Metab.
1999;
84
170-174
MissingFormLabel
- 35
Grimsrud PA, Picklo
Sr
MJ, Griffin TJ. et al .
Carbonylation of adipose proteins in obesity and insulin resistance: identification
of adipocyte fatty acid-binding protein as a cellular target of 4-hydroxynonenal.
Mol Cell Proteomics.
2007;
6
624-637
MissingFormLabel
- 36
Guilherme A, Virbasius JV, Puri V. et al .
Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes.
Nat Rev Mol Cell Biol.
2008;
9
367-377
MissingFormLabel
- 37
Hainer V, Zamrazilová H, Spálová J. et al .
Role of hereditary factors in weight loss and its maintenance.
Physiol Res.
2008;
57
S1-S15
MissingFormLabel
- 38
Harman-Boehm I, Blüher M, Redel H. et al .
Macrophage infiltration into omental versus subcutaneous fat across different populations:
effect of regional adiposity and the comorbidities of obesity.
J Clin Endocrinol Metab.
2007;
92
2240-2247
MissingFormLabel
- 39
Haupt A, Thamer C, Staiger H. et al .
Variation in the FTO gene influences food intake but not energy expenditure.
Exp Clin Endocrinol Diabetes.
2008 Dec 3;
, epub ahead
MissingFormLabel
- 40
Hofbauer KG, Nicholson JR.
Pharmacotherapy of obesity.
Exp Clin Endocrinol Diabetes.
2006;
114
475-484
MissingFormLabel
- 41
Hotamisligil GS.
Mechanisms of TNF-alpha-induced insulin resistance.
Exp Clin Endocrinol Diabetes.
1999;
107
119-125
MissingFormLabel
- 42
Hotamisligil GS, Shargill NS, Spiegelman BM.
Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin
resistance.
Science.
1993;
259
87-91
MissingFormLabel
- 43
Kahn SE, Hull RL, Utzschneider KM.
Mechanisms linking obesity to insulin resistance and type 2 diabetes.
Nature.
2006;
444
840-846
MissingFormLabel
- 44
Kintscher U, Hartge M, Hess K. et al .
T-lymphocyte infiltration in visceral adipose tissue. a primary event in adipose tissue
inflammation and the development of obesity-mediated insulin resistance.
Arterioscler Thromb Vasc Biol.
2008;
28
1304-1310
MissingFormLabel
- 45
Klein S, Fontana L, Young VL. et al .
Absence of an effect of liposuction on insulin action and risk factors for coronary
heart disease.
N Engl J Med.
2004;
350
2549-2557
MissingFormLabel
- 46
Klöting N, Schleinitz D, Ruschke K. et al .
Inverse relationship between obesity and FTO gene expression in visceral adipose tissue
in humans.
Diabetologia.
2008;
51
641-647
MissingFormLabel
- 47
Klöting N, Stumvoll M, Blüher M.
The biology of visceral fat.
Internist.
2007;
48
126-133
MissingFormLabel
- 48
Knudtson MD, Klein BE, Klein R. et al .
Associations with weight loss and subsequent mortality risk.
Ann Epidemiol.
2005;
15
483-491
MissingFormLabel
- 49
Konrad D, Rudich A, Schoenle EJ.
Improved glucose tolerance in mice receiving intraperitoneal transplantation of normal
fat tissue.
Diabetologia.
2007;
50
833-839
MissingFormLabel
- 50
Kovacs P, Berndt J, Ruschke K. et al .
TCF7L2 gene expression in human visceral and subcutaneous adipose tissue is differentially
regulated but not associated with type 2 diabetes mellitus.
Metabolism.
2008;
57
1227-1231
MissingFormLabel
- 51
Kovacs P, Geyer M, Berndt J. et al .
Effects of genetic variation in the human retinol binding protein-4 gene (RBP4) on
insulin resistance and fat depot-specific mRNA expression.
Diabetes.
2007;
56
3095-3100
MissingFormLabel
- 52
Krude H, Biebermann H, Luck W. et al .
Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused
by POMC mutations in humans.
Nat Genet.
1998;
19
155-157
MissingFormLabel
- 53
Lång P, Harmelen V van, Rydén M. et al .
Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity.
PLoS ONE.
2008;
3
e1713
MissingFormLabel
- 54
Lefèbvre PJ, Scheen AJ.
Obesity: causes and new treatments.
Exp Clin Endocrinol Diabetes.
2001;
109
S215-S224
MissingFormLabel
- 55
LeRoith D, Novosyadlyy R, Gallagher EJ. et al .
Obesity and type 2 diabetes are associated with an increased risk of developing cancer
and a worse prognosis; epidemiological and mechanistic evidence.
Exp Clin Endocrinol Diabetes.
2008;
116
S4-S6
MissingFormLabel
- 56
Lolmède K, Durand de Saint Front V, Galitzky J. et al .
Effects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A
adipocytes.
Int J Obes.
2003;
27
1187-1195
MissingFormLabel
- 57
Loos RJ, Bouchard C.
Obesity – is it a genetic disorder?.
J Intern Med.
2003;
254
401-425
MissingFormLabel
- 58
Mårin P, Andersson B, Ottosson M. et al .
The morphology and metabolism of intraabdominal adipose tissue in men.
Metabolism.
1992;
41
1242-1248
MissingFormLabel
- 59
Michailidou Z, Jensen MD, Dumesic DA. et al .
Omental 11beta-hydroxysteroid dehydrogenase 1 correlates with fat cell size independently
of obesity.
Obesity (Silver Spring).
2007;
15
1155-1163
MissingFormLabel
- 60
Montague CT, Farooqi IS, Whitehead JP. et al .
Congenital leptin deficiency is associated with severe early-onset obesity in humans.
Nature.
1997;
387
903-908
MissingFormLabel
- 61
Mori Y, Hoshino K, Yokota K. et al .
Increased visceral fat and impaired glucose tolerance predict the increased risk of
metabolic syndrome in Japanese middle-aged men.
Exp Clin Endocrinol Diabetes.
2005;
113
334-339
MissingFormLabel
- 62
Motoshima H, Wu X, Sinha MK. et al .
Differential regulation of adiponectin secretion from cultured human omental and subcutaneous
adipocytes: effects of insulin and rosiglitazone.
J Clin Endocrinol Metab.
2002;
87
5662-5667
MissingFormLabel
- 63
Ohlson LO, Larsson B, Svärdsudd K. et al .
The influence of body fat distribution on the incidence of diabetes mellitus. 13.5
years of follow-up of the participants in the study of men born in 1913.
Diabetes.
1985;
34
1055-1058
MissingFormLabel
- 64
Olshansky SJ, Passaro DJ, Hershow RC. et al .
A potential decline in life expectancy in the United States in the 21st century.
N Engl J Med.
2005;
352
1138-1145
MissingFormLabel
- 65
Palming J, Sjöholm K, Jernås M. et al .
The expression of NAD(P)H:quinone oxidoreductase 1 is high in human adipose tissue,
reduced by weight loss, and correlates with adiposity, insulin sensitivity, and markers
of liver dysfunction.
J Clin Endocrinol Metab.
2007;
92
2346-2352
MissingFormLabel
- 66
Pausova Z.
From big fat cells to high blood pressure: a pathway to obesity-associated hypertension.
Curr Opin Nephrol Hypertens.
2006;
15
173-178
MissingFormLabel
- 67
Pasarica M, Sereda OR, Redman LM. et al .
Reduced adipose tissue oxygenation in human obesity – evidence for rarefaction, macrophage
chemotaxis and inflammation without an angiogenic response.
Diabetes.
2008 Dec 15;
, epub ahead
MissingFormLabel
- 68
Piper MD, Bartke A.
Diet and aging.
Cell Metab.
2008;
8
99-104
MissingFormLabel
- 69
Pischon T, Boeing H, Hoffmann K. et al .
General and abdominal adiposity and risk of death in Europe.
N Engl J Med.
2008;
359
2105-2120
MissingFormLabel
- 70
Plaisier CL, Kyttälä M, Weissglas-Volkov D. et al .
Galanin preproprotein is associated with elevated plasma triglycerides.
Arterioscler Thromb Vasc Biol.
2008 Nov 6;
, epub ahead
MissingFormLabel
- 71
Pou KM, Massaro JM, Hoffmann U. et al .
Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to
markers of inflammation and oxidative stress: the Framingham Heart Study.
Circulation.
2007;
116
1234-1241
MissingFormLabel
- 72
Prudente S, Flex E, Morini E. et al .
A functional variant of the adipocyte glycerol channel aquaporin 7 gene is associated
with obesity and related metabolic abnormalities.
Diabetes.
2007;
56
1468-1474
MissingFormLabel
- 73
Rankinen T, Zuberi A, Chagnon YC. et al .
The human obesity gene map: the 2005 update.
Obesity (Silver Spring).
2006;
14
529-644
MissingFormLabel
- 74
Rausch ME, Weisberg S, Vardhana P. et al .
Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic
T-cell infiltration.
Int J Obes (Lond).
2008;
32
451-463
MissingFormLabel
- 75
Rasouli N, Molavi B, Elbein SC. et al .
Ectopic fat accumulation and metabolic syndrome.
Diabetes Obes Metab.
2007;
9
1-10
MissingFormLabel
- 76
Reaven GM.
Importance of identifying the overweight patient who will benefit the most by losing
weight.
Ann Intern Med.
2003;
138
420-423
MissingFormLabel
- 77
Romao I, Roth J.
Genetic and environmental interactions in obesity and type 2 diabetes.
J Am Diet Assoc.
2008;
108
S24-S28
MissingFormLabel
- 78
Rudich A, Kanety H, Bashan N.
Adipose stress-sensing kinases: linking obesity to malfunction.
Trends Endocrinol Metab.
2007;
18
291-299
MissingFormLabel
- 79
Sabio G, Das M, Mora A. et al .
A stress signaling pathway in adipose tissue regulates hepatic insulin resistance.
Science.
2008;
322
1539-1543
MissingFormLabel
- 80
Sainaghi PP, Castello L, Bergamasco L. et al .
Metabolic characteristics of glucose intolerance: the critical role of obesity.
Exp Clin Endocrinol Diabetes.
2008;
116
86-93
MissingFormLabel
- 81
Schenk S, Saberi M, Olefsky JM.
Insulin sensitivity: modulation by nutrients and inflammation.
J Clin Invest.
2008;
118
2992-3002
MissingFormLabel
- 82
Schinner S, Kempf K, Overmann H. et al .
Association of impaired glucose metabolism in morbid obesity with hypoadiponectinaemia.
Exp Clin Endocrinol Diabetes.
2008;
116
S64-S69
MissingFormLabel
- 83
Shackleton S, Lloyd DJ, Jackson SN. et al .
LMNA, encoding lamin A/C, is mutated in partial lipodystrophy.
Nat Genet.
2000;
24
153-156
MissingFormLabel
- 84
Skurk T, Alberti-Huber C, Herder C. et al .
Relationship between adipocyte size and adipokine expression and secretion.
J Clin Endocrinol Metab.
2007;
92
1023-1033
MissingFormLabel
- 85
Spalding KL, Arner E, Westermark PO. et al .
Dynamics of fat cell turnover in humans.
Nature.
2008;
453
783-787
MissingFormLabel
- 86
Staiger H, Häring HU.
Adipocytokines: fat-derived humoral mediators of metabolic homeostasis.
Exp Clin Endocrinol Diabetes.
2005;
113
67-79
MissingFormLabel
- 87
Stefan N, Stumvoll M.
Adiponectin – its role in metabolism and beyond.
Horm Metab Res.
2002;
34
469-474
MissingFormLabel
- 88
Thorne A, Lonnqvist F, Apelman J. et al .
A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection
with adjustable gastric banding.
Int J Obes Relat Metab Disord.
2002;
26
193-199
MissingFormLabel
- 89
Tran TT, Yamamoto Y, Gesta S. et al .
Beneficial effects of subcutaneous fat transplantation on metabolism.
Cell Metab.
2008;
7
410-420
MissingFormLabel
- 90
Trayhurn P, Wood IS.
Adipokines: inflammation and the pleiotropic role of white adipose tissue.
Br J Nutr.
2004;
92
347-355
MissingFormLabel
- 91
Trayhurn P, Wang B, Wood IS.
Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity?.
Br J Nutr.
2008;
100
227-235
MissingFormLabel
- 92
Tuncman G, Erbay E, Hom X. et al .
A genetic variant at the fatty acid-binding protein aP2 locus reduces the risk for
hypertriglyceridemia, type 2 diabetes, and cardiovascular disease.
Proc Natl Acad Sci USA.
2006;
103
6970-6975
MissingFormLabel
- 93
Vaisse C, Clement K, Guy-Grand B. et al .
A frameshift mutation in human MC4R is associated with a dominant form of obesity.
Nat Genet.
1998;
20
113-114
MissingFormLabel
- 94
Gaal LF Van, Mertens IL, Block CE De.
Mechanisms linking obesity with cardiovascular disease.
Nature.
2006;
444
875-880
MissingFormLabel
- 95
Harmelen V Van, Röhrig K, Hauner H.
Comparison of proliferation and differentiation capacity of human adipocyte precursor
cells from the omental and subcutaneous adipose tissue depot of obese subjects.
Metabolism.
2004;
53
632-637
MissingFormLabel
- 96
Virtanen KA, Lönnroth P, Parkkola R. et al .
Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin
stimulation in nonobese and obese humans.
J Clin Endocrinol Metab.
2002;
87
3902-3910
MissingFormLabel
- 97
Wåhlén K, Sjölin E, Hoffstedt J.
The common rs9939609 gene variant of the fat mass- and obesity-associated gene FTO
is related to fat cell lipolysis.
J Lipid Res.
2008;
49
607-611
MissingFormLabel
- 98
Wajchenberg BL.
Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome.
Endocr Rev.
2000;
21
697-738
MissingFormLabel
- 99
Wang J, Kuusisto J, Vänttinen M. et al .
Variants of transcription factor 7-like 2 (TCF7L2) gene predict conversion to type
2 diabetes in the Finnish Diabetes Prevention Study and are associated with impaired
glucose regulation and impaired insulin secretion.
Diabetologia.
2007;
50
1192-1200
MissingFormLabel
- 100
Weinstein AR, Sesso HD, Lee IM. et al .
Relationship of physical activity vs. body mass index with type 2 diabetes in women.
JAMA.
2004;
292
1188-1194
MissingFormLabel
- 101
Weisberg SP, MacCann D, Desai M. et al .
Obesity is associated with macrophage accumulation in adipose tissue.
J Clin Invest.
2003;
112
1796-1808
MissingFormLabel
- 102
Wood IS, Wang B, Lorente-Cebrián S. et al .
Hypoxia increases expression of selective facilitative glucose transporters (GLUT)
and 2-deoxy-d-glucose uptake in human adipocytes.
Biochem Biophys Res Commun.
2007;
361
468-473
MissingFormLabel
- 103
World Health Organization
.
Health Report.
2005;
MissingFormLabel
- 104
Ye J, Gao Z, Yin J. et al .
Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction
in adipose tissue of ob/ob and dietary obese mice.
Am J Physiol Endocrinol Metab.
2007;
293
E1118-E1128
MissingFormLabel
- 105
Yeo GS, Farooqi IS, Aminian S. et al .
A frameshift mutation in MC4R associated with dominantly inherited human obesity.
Nat Genet.
1998;
20
111-112
MissingFormLabel
- 106
Youn BS, Bang SI, Klöting N. et al .
Serum Progranulin Concentrations May be Associated with Macrophage Infiltration into
Omental Adipose Tissue.
Diabetes.
2008 Dec 3;
, epub ahead
MissingFormLabel
- 107
Youn BS, Klöting N, Kratzsch J. et al .
Serum vaspin concentrations in human obesity and type 2 diabetes.
Diabetes.
2008;
57
372-377
MissingFormLabel
- 108
Yusuf S, Hawken S, Ounpuu S. et al .
Obesity and the risk of myocardial infarction in 27 000 participants from 52 countries:
a case-control study.
Lancet.
2005;
366
1640-1649
MissingFormLabel
- 109
Zeyda M, Farmer D, Todoric J. et al .
Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable
of excessive pro-inflammatory mediator production.
Int J Obes (Lond).
2007;
31
1420-1428
MissingFormLabel
Correspondence
M. BlüherMD
Medical Department
University of Leipzig
Ph.-Rosenthal-Str. 27
04103 Leipzig
Germany
Phone: +49/341/971 59 84
Fax: +49/341/972 24 39
Email: bluma@medizin.uni-leipzig.de