Subscribe to RSS
DOI: 10.1055/s-0029-1216654
The Catalytic Asymmetric Intramolecular Stetter Reaction
Publication History
Publication Date:
22 April 2009 (online)

Abstract
This Account chronicles our efforts in the development of the catalytic asymmetric Stetter reaction using chiral triazolium salts as small molecule organic catalysts. Advances in the mechanistically related azolium-catalyzed asymmetric benzoin reaction are discussed, particularly as they apply to catalyst design. A chronological treatise of reaction discovery, catalyst optimization and reactivity extension follows.
1 Introduction
2 Proposed Mechanism of the Benzoin and Stetter Reactions
3 The Benzoin Reaction
4 Synthesis of Chiral Bicyclic Triazolium Salts
4.1 Aminoindanol-Derived Bicyclic Scaffold
4.2 Phenylalanine-Derived Bicyclic Scaffold
5 The Intermolecular Stetter Reaction
6 The Asymmetric Intramolecular Stetter Reaction
6.1 Recent Contributions to the Asymmetric Intramolecular Stetter Reaction
6.2 Comparison of the Asymmetric Intramolecular Stetter Reaction with Two Different Triazolium Carbene Scaffolds
6.3 Scope of the Intramolecular Stetter Reaction with Different Tethers
6.4 Electronic Effects of the Aromatic Backbone of the Aldehyde on the Intramolecular Stetter Reaction
6.5 Effects of the Michael Acceptor on the Asymmetric Intra-molecular Stetter Reaction
6.6 The Asymmetric Intramolecular Stetter Reaction of Aliphatic Aldehydes
7 Effects of Pre-existing Stereocenters on the Intramolecular Stetter Reaction
8 Synthesis of Quaternary Stereocenters via the Asymmetric Intramolecular Stetter Reaction
9 Synthesis of Contiguous Stereocenters via the Asymmetric Intramolecular Stetter Reaction
10 Asymmetric Synthesis of Hydrobenzofuranones via the Intramolecular Stetter Reaction
11 Applications to Total Synthesis
12 Summary and Outlook
Key words
asymmetric synthesis - triazolium salts - quaternary stereocenters - carbene catalysis - nucleophilic catalysis - organocata-lysis - Stetter reaction - benzoin reaction
- For reviews, see:
- 1a
Regitz M. Angew. Chem., Int. Ed. Engl. 1996, 35: 725Reference Ris Wihthout Link - 1b
Bourissou D.Guerret O.Gabbai FP.Bertrand G. Chem. Rev. 2000, 100: 39Reference Ris Wihthout Link - 1c
Herrmann WA. Angew. Chem. Int. Ed. 2002, 41: 1291Reference Ris Wihthout Link - For reviews, see:
- 2a
Enders D.Balensiefer T. Acc. Chem. Res. 2004, 37: 534Reference Ris Wihthout Link - 2b
Johnson JS. Angew. Chem. Int. Ed. 2004, 43: 1326Reference Ris Wihthout Link - 2c
Pohl M.Lingen B.Müller M. Chem. Eur. J. 2002, 8: 5288Reference Ris Wihthout Link - 2d
Nair V.Bindu S.Sreekumar V. Angew. Chem. Int. Ed. 2004, 43: 5130Reference Ris Wihthout Link - 2e
Zeitler K. Angew. Chem. Int. Ed. 2005, 44: 7506Reference Ris Wihthout Link - 2f
Christmann M. Angew. Chem. Int. Ed. 2005, 44: 2632Reference Ris Wihthout Link - 2g
Webber P.Krische MJ. Chemtracts 2007, 19: 262Reference Ris Wihthout Link - 3
Seebach D. Angew. Chem., Int. Ed. Engl. 1979, 18: 239Reference Ris Wihthout Link - For reviews, see:
- 4a
Albright JD. Tetrahedron 1983, 39: 3207Reference Ris Wihthout Link - 4b
Aitken RA.Thomas AW. Adv. Heterocycl. Chem. 2001, 79: 89Reference Ris Wihthout Link - For examples of the benzoin reaction that are not referenced later in the text, see:
- 5a
Hachisu Y.Bode JW.Suzuki K. J. Am. Chem. Soc. 2003, 125: 8432Reference Ris Wihthout Link - 5b For examples of the benzoin
reaction with acylsilanes, see:
Enders D.Niemeier O.Balensiefer T. Angew. Chem. Int. Ed. 2006, 45: 1463Reference Ris Wihthout Link - 5c
Linghu X.Johnson JS. Angew. Chem. Int. Ed. 2003, 42: 2534Reference Ris Wihthout Link - 5d
Linghu X.Potnick JR.Johnson JS. J. Am. Chem. Soc. 2004, 126: 3070Reference Ris Wihthout Link - 6
Stetter H.Kuhlmann H. In Organic Reactions Vol. 40:Paquette LA. Wiley & Sons; New York: 1991. p.407Reference Ris Wihthout Link - 7a
Tomioka K.Koga K. Noncatalytic Additions to α,β-Unsaturated Carbonyl Compounds, In Asymmetric Synthesis Vol. 2:Morrison JD. Academic Press; New York: 1983. p.201Reference Ris Wihthout Link - 7b
Yoshikoshi A.Miyashita M. Acc. Chem. Res. 1985, 18: 284Reference Ris Wihthout Link - 7c
Rosini G.Ballini R. Synthesis 1988, 833Reference Ris Wihthout Link - 8
Lapworth A. J. Chem. Soc. 1903, 83: 995 - For the mechanism of the thiamine-catalyzed benzoin reaction, see:
- 9a
Breslow R. J. Am. Chem. Soc. 1958, 80: 3719Reference Ris Wihthout Link - 9b
Breslow R.Kim R. Tetrahedron Lett. 1994, 35: 699Reference Ris Wihthout Link - 9c
White M.Leeper F. J. Org. Chem. 2001, 66: 5124Reference Ris Wihthout Link - 10
Wöhler F.Liebig J. Ann. Pharm. (Lemgo, Ger.) 1832, 3: 249Reference Ris Wihthout Link - 11
Ugai T.Dokawa T.Tsubokawa S. J. Pharm. Soc. Jpn. 1943, 63: 296 - 12
Pohl M.Lingen B.Müller M. Chem. Eur. J. 2002, 8: 5289 - 13
Sheehan JC.Hunnemann DH. J. Am. Chem. Soc. 1966, 88: 3666Reference Ris Wihthout Link - 14
Sheehan JC.Hara T. J. Org. Chem. 1974, 39: 1196Reference Ris Wihthout Link - 15a
Tagaki W.Tamura Y.Yano Y. Bull. Chem. Soc. Jpn. 1980, 53: 478Reference Ris Wihthout Link - 15b
Martí J.Castells J.López-Calahorra F. Tetrahedron Lett. 1993, 34: 521Reference Ris Wihthout Link - 15c
Yamashita K.Sasaki S.-i.Osaki T.Nango M.Tsuda K. Tetrahedron Lett. 1995, 36: 4817Reference Ris Wihthout Link - 16
Igau A.Grutzmacher H.Baceiredo A.Trinquier G.Betrand G. Angew. Chem., Int. Ed. Engl. 1989, 28: 621 - 17
Arduengo AJ.Harlow RL.Kline M. J. Am. Chem. Soc. 1991, 113: 361Reference Ris Wihthout Link - 18
Enders D.Breuer K.Teles JH. Helv. Chim. Acta 1996, 79: 1217 - 19a
Knight RL.Leeper FJ. Tetrahedron Lett. 1997, 38: 3611Reference Ris Wihthout Link - 19b
Gerhard AU.Leeper FJ. Tetrahedron Lett. 1997, 38: 3615Reference Ris Wihthout Link - 20
Dvorak CA.Rawal VH. Tetrahedron Lett. 1998, 39: 2925 - 21
Knight RL.Leeper FJ. J. Chem. Soc., Perkin Trans. 1 1998, 1891 - 22
Enders D.Kallfass U. Angew. Chem. Int. Ed. 2002, 41: 1743Reference Ris Wihthout Link - 23
Dünkelmann P.Kolter-Jung D.Nitsche A.Demir AS.Siegert P.Lingen B.Baumann M.Pohl M.Müller M. J. Am. Chem. Soc. 2002, 124: 12084 - 24a
Enders D.Niemeier O.Balensiefer T. Angew. Chem. Int. Ed. 2006, 45: 1463Reference Ris Wihthout Link - 24b
Enders D.Niemeier O.Raabe G. Synlett 2006, 2431Reference Ris Wihthout Link - 25
Takikawa H.Hachisu Y.Bode JW.Suzuki K. Angew. Chem. Int. Ed. 2006, 45: 3492 - 26
Mennen SM.Miller SJ. J. Org. Chem. 2007, 72: 5260Reference Ris Wihthout Link - 27
Linghu X.Potnick JR.Johnson JS. J. Am. Chem. Soc. 2004, 126: 3070 - 28
Kerr MS.Read de Alaniz J.Rovis T. J. Org. Chem. 2005, 70: 5725 - 29
Rovis T. Chem. Lett. 2008, 37: 2 - 30
Ghosh AK.Fidanze S.Senanayake CH. Synthesis 1998, 937 - 31
Norman BH.Kroin JS. J. Org. Chem. 1996, 61: 4990 - 32a
Meyers AI.Tavares FX. J. Org. Chem. 1996, 61: 8207 - (b)
Smrcina M.Majer P.Majerová E.Guerassina TA.Eissenstat MA. Tetrahedron 1997, 53: 12867 - 33a
Enders D.Breuer K. Addition of Acyl Carbanion Equivalents to Carbonyl Groups and Enones, In Comprehensive Asymmetric Catalysis I-III Vol. 3:Jacobsen EN.Pfaltz A.Yamamoto H. Springer-Verlag; Berlin: 1999. p.1093Reference Ris Wihthout Link - 33b
Enders D.Balensiefer T. Acc. Chem. Res. 2004, 37: 534Reference Ris Wihthout Link - 34
Nahm MR.Potnick JR.White PS.Johnson JS. J. Am. Chem. Soc. 2006, 128: 2751 ; and references cited therein - For related examples of acylsilanes in the Stetter reaction, see:
- 35a
Mattson AE.Bharadwaj AR.Scheidt KA. J. Am. Chem. Soc. 2004, 126: 2314Reference Ris Wihthout Link - 35b
Bharadwaj AR.Scheidt KA. Org. Lett. 2004, 6: 2465Reference Ris Wihthout Link - 36
Mattson AE.Zuhl AM.Reynolds TE.Scheidt KA. J. Am. Chem. Soc. 2006, 128: 4932 - 37a
Ciganek E. Synthesis 1995, 1311Reference Ris Wihthout Link - 37b For a seminal example
of an intramolecular Stetter reaction, see:
Trost BM.Shuey CD.DiNinno F.McElvain SS. J. Am. Chem. Soc. 1979, 101: 1284Reference Ris Wihthout Link - 38
Enders D.Breuer K.Runsink J.Teles JH. Helv. Chim. Acta 1996, 79: 1899Reference Ris Wihthout Link - 39
Pesch J.Harms K.Bach T. Eur. J. Org. Chem. 2004, 2025 - 40
Mennen SM.Blank JT.Tran-Dubé MB.Imbriglio JE.Miller SJ. Chem. Commun. 2005, 195 - 41
Matsumoto Y.Tomioka K. Tetrahedron Lett. 2006, 47: 5843 - 42a
Kerr MS.Read de Alaniz J.Rovis T. J. Am. Chem. Soc. 2002, 124: 10298Reference Ris Wihthout Link - 42b
Read de Alaniz J.Kerr MS.Moore JL.Rovis T. J. Org. Chem. 2008, 73: 2033Reference Ris Wihthout Link - 45
Kerr MS.Rovis T. Synlett 2003, 1934 - 46a
Minowa N.Hirayama M.Fukatsu S. Tetrahedron Lett. 1984, 25: 1147Reference Ris Wihthout Link - 46b
Ruiz M.Ojea V.Shapiro G.Weber HP.Pombo-Villar E. Tetrahedron Lett. 1994, 35: 4551Reference Ris Wihthout Link - 46c
Hayashi T.Senda T.Takaya Y.Ogasawara M. J. Am. Chem. Soc. 1999, 121: 11591Reference Ris Wihthout Link - 46d
Fernández M.Diaz A.Guillin JJ.Blanco O.Ruiz M.Ojea V. J. Org. Chem. 2006, 71: 6958Reference Ris Wihthout Link - 46e
Kondoh A.Yorimitsu H.Oshima K. J. Am. Chem. Soc. 2007, 129: 6996Reference Ris Wihthout Link - 46f
Nishida G.Noguchi K.Hirano M.Tanaka K. Angew. Chem. Int. Ed. 2008, 47: 3410Reference Ris Wihthout Link - 46g
Sulzer-Mossé S.Tissot M.Alexakis A. Org. Lett. 2007, 9: 3749Reference Ris Wihthout Link - 46h
Capuzzi M.Perdicchia D.Jørgensen KA. Chem. Eur. J. 2008, 14: 128Reference Ris Wihthout Link - 47
Cullen SC.Rovis T. Org. Lett. 2008, 10: 3141 - 48
Reynolds NT.Rovis T. Tetrahedron 2005, 61: 6368 - 49a
Corey EJ.Guzman-Perez A. Angew. Chem. Int. Ed. 1998, 37: 389Reference Ris Wihthout Link - 49b
Christoffers J.Baro A. Angew. Chem. Int. Ed. 2003, 42: 1688Reference Ris Wihthout Link - 49c
Douglas CJ.Overman LE. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5363Reference Ris Wihthout Link - 50
Kerr MS.Rovis T. J. Am. Chem. Soc. 2004, 126: 8876 - 51
Trost BM.Shuey CD.DiNinno F.McElvain SS. J. Am. Chem. Soc. 1979, 101: 1284 - 52
Moore JL.Kerr MS.Rovis T. Tetrahedron 2006, 62: 11477 - 53
Read de Alaniz J.Rovis T. J. Am. Chem. Soc. 2005, 127: 6284 - For examples of intramolecular proton transfer, see:
- 54a
Zimmerman HE. Acc. Chem. Res. 1987, 20: 263Reference Ris Wihthout Link - 54b
Zimmerman HE.Wang P. Org. Lett. 2002, 4: 2593 ; and references cited thereinReference Ris Wihthout Link - 54c
Berrada S.Metzner P. Tetrahedron Lett. 1987, 28: 409Reference Ris Wihthout Link - It is also possible that the α-hydroxy-α-azolium anion adds to the Michael acceptor in concerted fashion, analogous to the reverse-Cope elimination mechanism seen with hydroxylamine additions; see:
- 55a
Niu D.Zhao K. J. Am. Chem. Soc. 1999, 121: 2456Reference Ris Wihthout Link - 55b
Sibi MP.Liu M. Org. Lett. 2000, 2: 3393Reference Ris Wihthout Link - 55c
Sibi MP.Prabagaran N.Ghorpade SG.Jasperse CP. J. Am. Chem. Soc. 2003, 125: 11796Reference Ris Wihthout Link - 56
Liu Q.Rovis T. J. Am. Chem. Soc. 2006, 128: 2552 - 57
Liu Q.Rovis T. Org. Process Res. Dev. 2007, 11: 598 - 58a
Stetter H.Kuhlmann H. Synthesis 1975, 379Reference Ris Wihthout Link - 58b Reference .
Reference Ris Wihthout Link
- 58c
Baumann KL.Butler DE.Deering CF.Mennen KE.Millar A.Nanninga TN.Palmer CW.Roth BD. Tetrahedron Lett. 1992, 33: 2283Reference Ris Wihthout Link - 58d
Galopin CC. Tetrahedron Lett. 2001, 42: 5589Reference Ris Wihthout Link - 58e
Harrington PE.Tius MA. J. Am. Chem. Soc. 2001, 123: 8509Reference Ris Wihthout Link - 58f
Anjaiah S.Chandrasekhar S.Gree R. Adv. Synth. Catal. 2004, 346: 1329Reference Ris Wihthout Link - 58g
Nicolaou KC.Tang YF.Wang JH. Chem. Commun. 2007, 1922Reference Ris Wihthout Link - 59
Orellana A.Rovis T. Chem. Commun. 2008, 730 - 60
Liu Q.Perreault S.Rovis T. J. Am. Chem. Soc. 2008, 130: 14066Reference Ris Wihthout Link
References
Investigation of the enantioselectivity as a function of conversion revealed that 80 is formed in 80% ee at 10% conversion, with rapid erosion to 50% ee at 30% conversion.
44Similar observations have been noted by Miller and co-workers; see reference 40.