Subscribe to RSS
DOI: 10.1055/s-0029-1217532
Synthesis of the First Thiazolidine-Condensed Five-, Six-, and Seven-Membered Heterocycles via Cyclization of Vinylogous N-Acyliminium Ions
Publication History
Publication Date:
01 July 2009 (online)

Abstract
Synthesis of new thiazolidine-fused five-, six-, and seven-membered heterocycles through vinylogous N-acyliminium ion-cyclization sequence, involving positions 3 and 4 of the thiazolidine ring, is described. The formation of bicyclic products, arising by generally disfavored 5-endo-trig cyclization initiated by sulfur atom acting as a nucleophile, indicates the preparative value of this method.
Key words
neighboring-group effects - lactams - iminium ions - cyclization - fused-ring systems
- 1a
Schultz AG.Pettus L. J. Org. Chem. 1997, 62: 6855Reference Ris Wihthout Link - 1b
Pandey G.Das P.Reddy PY. Eur. J. Org. Chem. 2000, 657Reference Ris Wihthout Link - 2a
Pei X.-F.Greig NH.Flippen-Anderson JL.Bi S.Brossi A. Helv. Chim. Acta 1994, 77: 1412Reference Ris Wihthout Link - 2b
Ishibashi H.Kato I.Takeda Y.Tamura O. Tetrahedron Lett. 2001, 42: 931Reference Ris Wihthout Link - 3a
Fuji K.Kawabata T.Ohmori T.Shang M.Node M. Heterocycles 1998, 47: 951Reference Ris Wihthout Link - 3b
Forns P.Diez A.Rubiralta M. J. Org. Chem. 1996, 61: 7882Reference Ris Wihthout Link - 4a
Sun P.Sun C.Weinreb SM. J. Org. Chem. 2002, 67: 4337Reference Ris Wihthout Link - 4b
Chihab-Eddine A.Daïch A.Jilale A.Decroix B. Tetrahedron Lett. 2001, 42: 573Reference Ris Wihthout Link - For recent reviews on iminium ion cyclization, see:
- 5a
Royer J.Bonin M.Micouin L. Chem. Rev. 2004, 104: 2311Reference Ris Wihthout Link - 5b
Maryanoff BE.Zhang H.-C.Cohen JH.Turchi IJ.Maryanoff CA. Chem. Rev. 2004, 104: 1431Reference Ris Wihthout Link - 5c
Speckamp WN.Moolenaar MJ. Tetrahedron 2000, 56: 3817Reference Ris Wihthout Link - 6a
Hart DJ. J. Org. Chem. 1981, 46: 367Reference Ris Wihthout Link - 6b
Winterfeldt E. Synthesis 1975, 617Reference Ris Wihthout Link - 6c
Padwa A.Kappe CO.Cochran JE.Snyder JP. J. Org. Chem. 1997, 62: 2786Reference Ris Wihthout Link - 7
Marković R.Baranac M.Steel PJ.Kleinpeter E.Stojanović M. Heterocycles 2005, 65: 2635 - 8a
Marković R.D˛ambaski Z.Baranac M. Tetrahedron 2001, 57: 5833Reference Ris Wihthout Link - 8b
Marković R.Baranac M.D˛ambaski Z.Stojanović M.Steel PJ. Tetrahedron 2003, 59: 7803Reference Ris Wihthout Link - 9a
Pujari HK. Adv. Heterocycl. Chem. 1990, 49: 1Reference Ris Wihthout Link - 9b
Köpper S.Lindner K.Martens J. Tetrahedron 1992, 48: 10277Reference Ris Wihthout Link - 10a
Pinck LA.Hilbert GE. J. Am. Chem. Soc. 1946, 751Reference Ris Wihthout Link - 10b
McKillop A.Ford ME. Tetrahedron 1974, 30: 2467Reference Ris Wihthout Link - 10c
Stetter H.Schwarz M.Hirschhorn A. Chem. Ber. 1959, 92: 1629Reference Ris Wihthout Link - 11
Geluk HW.Schlatmann JLMA. Tetrahedron 1968, 24: 5361 - For this type of neighboring-group participation, see:
- 12a
Pasto DJ.Serve MP. J. Am. Chem. Soc. 1965, 87: 1515Reference Ris Wihthout Link - 12b
Cheng X.-E.Hui Y.-Z.Gu J.-H.Jiang X.-K. Chem. Commun. 1985, 71Reference Ris Wihthout Link - 12c
Bhatt MV.Rao GV.Rao KS. J. Org. Chem. 1979, 44: 984Reference Ris Wihthout Link - 12d
Irie T.Tanida H. J. Org. Chem. 1980, 45: 1759Reference Ris Wihthout Link - 12e
Holum JR.Jorenby D.Mattison P. J. Org. Chem. 1964, 29: 769Reference Ris Wihthout Link - 13
Zheng T.-C.Burkart M.Richardson DE. Tetrahedron Lett. 1999, 40: 603 - 14
Van Maarseveen JH.Scheeren HW.Kruse CG. Tetrahedron 1993, 49: 2325 - For recent examples of the 5-endo-trig mode ring-closing reaction, see:
- 17a
Fuwa H.Sasaki M. Org. Lett. 2007, 9: 3347Reference Ris Wihthout Link - 17b
Kim I.Won HK.Choi J.Lee GH. Tetrahedron 2007, 63: 12954Reference Ris Wihthout Link - 17c
Ray D.Paul S.Brahma S.Ray JK. Tetrahedron Lett. 2007, 48: 8005Reference Ris Wihthout Link - 17d
Bogen S.Goddard J.-P.Fensterbank L.Malacria M. ARKIVOC 2008, (viii): 126Reference Ris Wihthout Link - 17e
Ichikawa J.Iwai Y.Nadano R.Mori T.Ikeda M. Chem. Asian J. 2008, 3: 393Reference Ris Wihthout Link - 17f
Marchand P.Gulea M.Masson S.Saquet M.Collignon N. Org. Lett. 2000, 2: 3757Reference Ris Wihthout Link - 17g
Bommezijn S.Martin CG.Kennedy AR.Lizos D.Murphy JA. Org. Lett. 2001, 3: 3405Reference Ris Wihthout Link - 17h
Chowdhury MA.Reissig H.-U. Synlett 2006, 2383Reference Ris Wihthout Link - 17i
Clark AJ.Dell CP.McDonagh JM.Geden J.Mawdsley P. Org. Lett. 2003, 5: 2063Reference Ris Wihthout Link - 17j
Jones AD.Redfern AL.Knight DW.Morgan IR.Williams AC. Tetrahedron 2006, 62: 9247Reference Ris Wihthout Link - 17k
Clive DLJ.Yang W.MacDonald AC.Wang Z.Cantin M. J. Org. Chem. 2001, 66: 1996Reference Ris Wihthout Link - 17l
Geyer A.Moser F. Eur. J. Org. Chem. 2000, 1113Reference Ris Wihthout Link - 18a
Baldwin JE. Chem. Commun. 1976, 736Reference Ris Wihthout Link - 18b
Baldwin JE.Thomas RC.Kruse LI.Silberman L. J. Org. Chem. 1977, 42: 3846Reference Ris Wihthout Link - 19
Chatgilialoglu C.Ferreri C.Guerra M.Timokhin V.Froudakis G.Gimisis T. J. Am. Chem. Soc. 2002, 124: 10765
References and Notes
Typical Procedure for the Synthesis of ( Z )-Ethyl 2-(Tetrahydrothiazolo[4,3- b ][1,3]thiazin-6 (2 H )-ylidene)acetate (9f) The thioester 7f (50.5 mg, 0.17 mmol) was dissolved in dry EtOH (5 mL) and a solution of NaOEt (0.2 M in EtOH, 0.85 mL, 0.17 mmol) was added at r.t. with vigorous stirring. After hydrolysis to thiol, as evidenced by complete consumption of the reactant (ca. 15 min; TLC), the reaction mixture was cooled down to 0 ˚C. Twofold mass excess of NaBH4 (101 mg, 15-20 mmol equiv) was added, followed by 3 drops of 0.4 M HCl in EtOH. The addition of the same amount of acid was continued in regular 10 min intervals until the end of the reaction (45 min), when the reaction mixture was quenched with 1 M HCl in EtOH. The suspension was stirred for an additional 30 min at 0 ˚C, diluted with H2O, extracted with CHCl3, the organic phase separated, dried with Na2SO4, and the solvent evaporated under reduced pressure. Purification of a crude product by column chromatography (SiO2; PE-EtOAc solvent gradient 100:0 → 80:20) afforded the final product 9f as a white solid (27.4 mg, 66%); mp 108-109 ˚C. ¹H NMR (200 MHz, CDCl3): δ = 1.27 (3 H, t, J = 7.4 Hz, CH 3CH2), 1.65-2.05 (2 H, m, C3H2), 2.76-2.83 (1 H, m, C2H), 2.83 (1 H, dd, J 1 = 11.8 Hz, J 2 = 2.0 Hz, C8H), 3.12 (1 H, ddd, J 1 = 13.6 Hz, J 2 = 12.2 Hz, J 3 = 3.0 Hz, C2H), 3.27 (1 H, ddd, J 1 = 14.4 Hz, J 2 = 12.6 Hz, J 3 = 2.6 Hz, C4H), 3.39 (1 H, dd, J 1 = 11.8 Hz, J 2 = 7.2 Hz, C8H), 3.80-3.87 (1 H, m, C4H), 4.17 (2 H, q, J = 7.4 Hz), 5.05 (1 H, s, C6 ′H), 5.18 (1 H, dd, J 1 = 7.2 Hz, J 2 = 2.0, C8aH) ppm. ¹³C NMR (50.3 MHz, CDCl3): δ = 14.6 (CH3CH2), 22.0 (C3), 29.1 (C2), 33.0 (C8), 46.8 (C4), 59.3 (CH2CH3), 67.5 (C8a), 83.5 (C6 ′), 162.3 (C6), 168.9 (CO2) ppm. IR: 2977, 2951, 2925, 2897, 1662, 1531, 1459, 1427, 1335, 1276, 1226, 1205, 1177, 1144, 1102, 1043, 1003, 900, 809 cm-¹. HR MS (CI/TOF): m/z [M + H]+ calcd: 246.06170; found: 246.06176 ± 0.24 ppm.
16Analytical Data of (Z)-Ethyl
2-{7-Methyl-2H-thiazolo[4,3-b]thiazol-5 (3H,7H,7aH)-ylidene}acetate
(9c)
Isolated in 37% yield
as a mixture of trans- and cis-isomer in a 75:25 ratio.
Compound trans-9c: ¹H
NMR (500 MHz, CDCl3): δ = 1.26 (3 H,
t, J = 7.0
Hz, CH
3CH2), 1.49
(3 H, d, J = 6.5
Hz, CH
3CHS), 3.09-3.12
(1 H, m, CH2S), 3.15-3.20 (1 H, m, CH2S),
3.26-3.32 (1 H m, CH2N), 3.66 (1 H, dq, J
1 = 6.5
Hz, J
2 = 5.5 Hz, CHCH3S), 3.97 (1 H, ddd, J
1 = 9.0
Hz, J
2 = 6.0 Hz, J
3 = 3.0
Hz, CH2N) 4.16 (2 H, q, J = 7.0
Hz, CH
2CH3), 4.89
(1 H, d, J = 5.5
Hz, CHSN), 5.07 (1 H, s, = CH) ppm. ¹³C
NMR (50.3 MHz, CDCl3): δ = 14.5 (CH3CH2), 20.1 (CH3CHS), 32.0 (CH2S),
45.1 (CHCH3S), 50.7 (CH2N), 59.4
(CH2CH3), 76.8
(CHSN), 84.4 (=CH), 163.76 (C=), 168.6 (CO2)
ppm.
Compound cis-9c: ¹H NMR (500 MHz,
CDCl3): δ = 1.27 (3 H, t, J = 7.0 Hz,
CH
3CH2), 1.46 (3
H, d, J = 7.0
Hz, CH
3CHS), 3.05-3.09
(1 H, m, CH2S), 3.24-3.33 (1 H, m, CH2S),
3.29-3.41 (1 H, m, CH2N), 3.89 (1 H, dq, J
1 = 7.0 Hz, J
2 = 5.5
Hz, CHCH3S), 4.00 (1 H, ddd, J
1 = 9.2
Hz, J
2 = 5.8
Hz, J
3 = 3.2
Hz, CH2N) 4.16 (2 H, q, J = 7.0
Hz, CH2CH3), 5.10
(1 H, s, =CH), 5.28 (1 H, d, J = 5.5
Hz, CHSN) ppm. ¹³C NMR (50.3 MHz, CDCl3): δ = 14.5 (CH3CH2), 17.0 (CH3CHS), 31.0 (CH2S),
41.3 (CHCH3S), 51.0 (CH2N),
59.4 (CH2CH3),
76.8 (CHSN), 84.8 (=CH), 163.8 (C=), 168.6 ppm.