References and Notes
<A NAME="RU04309ST-1A">1a</A>
Schröder M.
Chem. Rev.
1980,
80:
187
<A NAME="RU04309ST-1B">1b</A>
Haines
AH. In
Methods for the Oxidation
of Organic Compounds
Academic Press;
London:
1985.
p.75-84
<A NAME="RU04309ST-1C">1c</A>
Singh HS. In
Organic Syntheses
by Oxidation with Metal Compounds
Mijis WJ.
de Jonge CRHI.
Plenum Press;
New York:
1986.
p.633-693.
<A NAME="RU04309ST-2A">2a</A>
Kolb HC.
VanNieuwenhze MS.
Sharpless KB.
Chem.
Rev.
1994,
94:
2483
<A NAME="RU04309ST-2B">2b</A>
Waldmann H. In
Organic Synthesis Highlights II
Wiley-VCH;
Weinheim:
1995.
p.9-18
<A NAME="RU04309ST-2C">2c</A>
Kolb HC.
Sharpless KB. In
Transition Metals for Organic Synthesis
Vol.
2:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
2004.
p.275-307
<A NAME="RU04309ST-3A">3a</A>
Maione AM.
Romeo A.
Synthesis
1984,
955
<A NAME="RU04309ST-3B">3b</A>
Coleman KS.
Coppe M.
Thomas C.
Osborn JA.
Tetrahedron Lett.
1999,
40:
3723
<A NAME="RU04309ST-3C">3c</A>
Döbler C.
Mehltretter GM.
Sundermeier U.
Eckert M.
Militzer H.-C.
Beller M.
Tetrahedron
Lett.
2001,
42:
8447
<A NAME="RU04309ST-3D">3d</A>
Muldoon J.
Brown SN.
Org. Lett.
2002,
4:
1043
<A NAME="RU04309ST-4A">4a</A>
Henbest HB.
Khan SA.
J. Chem. Soc., Chem. Commun.
1968,
1036
<A NAME="RU04309ST-4B">4b</A>
Hauser FM.
Ellenberger SR.
Clardy JC.
Bass LS.
J.
Am. Chem. Soc.
1984,
106:
2458
<A NAME="RU04309ST-4C">4c</A>
Solladié G.
Fréchou C.
Demailly G.
Tetrahedron Lett.
1986,
27:
2867
<A NAME="RU04309ST-4D">4d</A>
Kaldor SW.
Hammond M.
Tetrahedron
Lett.
1991,
32:
5043
<A NAME="RU04309ST-4E">4e</A>
Priebe W.
Grynkiewicz G.
Tetrahedron Lett.
1991,
32:
7353
<A NAME="RU04309ST-5A">5a</A>
Schröder M.
Griffith WP.
J. Chem. Soc., Dalton Trans.
1978,
1599
<A NAME="RU04309ST-5B">5b</A>
Bassignani L.
Brandt A.
Caciagli V.
Re L.
J. Org. Chem.
1978,
43:
4245
<A NAME="RU04309ST-5C">5c</A>
Hillis LR.
Ronald RC.
J.
Org. Chem.
1985,
50:
470
<A NAME="RU04309ST-5D">5d</A>
Armstrong A.
Gethin DM.
Wheelhouse CJ.
Synlett
2004,
350
<A NAME="RU04309ST-6">6</A>
Gao S.
Herzig D.
Wang B.
Synthesis
2001,
544
<A NAME="RU04309ST-6A">6a</A>
Cook JW.
Schoental R.
J.
Chem. Soc.
1948,
170
<A NAME="RU04309ST-6B">6b</A>
Okamoto A.
Tainaka K.
Kamei T.
Org.
Biomol. Chem.
2006,
4:
1638
<A NAME="RU04309ST-6C">6c</A>
Tanaka K.
Tainaka K.
Okamoto A.
Bioorg.
Med. Chem.
2007,
15:
1615
<A NAME="RU04309ST-6D">6d</A>
Umemoto T.
Okamoto A.
Org. Biomol. Chem.
2008,
6:
269
Compound 1a:
<A NAME="RU04309ST-8A">8a</A>
Gates M.
Montzka TA.
J. Med. Chem.
1964,
7:
127
<A NAME="RU04309ST-8B">8b</A>
Osa Y.
Ida Y.
Yano Y.
Furuhata K.
Nagase H.
Heterocycles
2006,
69:
271
<A NAME="RU04309ST-8C">8c</A>
Fujii H.
Osa Y.
Ishihara M.
Hanamura S.
Nemoto T.
Nakajima M.
Hasebe K.
Mochizuki H.
Nagase H.
Bioorg. Med.
Chem. Lett.
2008,
18:
4978
Compound 1b:
<A NAME="RU04309ST-9A">9a</A>
Coop A.
Janetka JW.
Lewis JW.
Rice KC.
J.
Org. Chem.
1998,
63:
4392
<A NAME="RU04309ST-9B">9b</A>
Carroll RJ.
Leisch H.
Rochon L.
Hudlicky T.
Cox DP.
J. Org. Chem.
2009,
74:
747
<A NAME="RU04309ST-10A">10a</A>
Minato M.
Yamamoto K.
Tsuji J.
J. Org. Chem.
1990,
55:
766
<A NAME="RU04309ST-10B">10b</A>
Kwong H.-L.
Sorato C.
Ogino Y.
Chen H.
Sharpless KB.
Tetrahedron
Lett.
1990,
21:
2999
<A NAME="RU04309ST-11A">11a</A>
Nan Y.
Xu W.
Zaw K.
Hughes KE.
Huang L.-F.
Dunn WJ.
Bauer L.
Bhargava HN.
J.
Heterocycl. Chem.
1997,
34:
1195
<A NAME="RU04309ST-11B">11b</A>
Meredith W.
Nemeth GA.
Boucher R.
Carney R.
Haas M.
Sigvardson K.
Teleha CA.
Tetrahedron
Lett.
2003,
44:
73814
<A NAME="RU04309ST-11C">11c</A>
Fujii H.
Imaide S.
Watanabe A.
Nemoto T.
Nagase H.
Tetrahedron
Lett.
2008,
49:
6293
Dihydroxylation of enamines by
OsO4 oxidation was reported to occur:
<A NAME="RU04309ST-12A">12a</A>
Kutney JP.
Bylsma F.
J. Am. Chem. Soc.
1970,
92:
6090
<A NAME="RU04309ST-12B">12b</A>
LaLonde RT.
Auer E.
Wong
CF.
Muralidharan VP.
J.
Am. Chem. Soc.
1971,
93:
2501
<A NAME="RU04309ST-12C">12c</A>
Mangeney P.
Andriamialisoa RZ.
Lanlois N.
Langlois N.
Langlois Y.
Potier P.
J. Am. Chem.
Soc.
1979,
101:
2243
Enamine moieties in indoles were
reportedly oxidized with OsO4 to indolinones via dihydroindolines:
<A NAME="RU04309ST-13A">13a</A> For recent examples,
see:
Sundberg RJ. In
The Chemistry of Indoles
Academic
Press;
London:
1970.
p.298
<A NAME="RU04309ST-13B">13b</A>
Kitajima M.
Takayama H.
Sakai S.
J.
Chem. Soc., Perkin Trans. 1
1994,
1573
<A NAME="RU04309ST-13C">13c</A>
Takayama H.
Tominaga Y.
Kitajima M.
Aimi N.
Sakai S.
J.
Org. Chem.
1994,
59:
4381
<A NAME="RU04309ST-13D">13d</A>
Peterson AC.
Cook JM.
J.
Org. Chem.
1995,
60:
120
<A NAME="RU04309ST-13E">13e</A>
Wearing XZ.
Cook JM.
Org.
Lett.
2002,
4:
4237
<A NAME="RU04309ST-14">14</A>
In the Supporting Information, the
deprotonation of osmate ester is discussed in detail.
<A NAME="RU04309ST-15">15</A>
Plausible mechanisms to amide 2 and lactam 6 are
described in the Supporting Information.
<A NAME="RU04309ST-16">16</A>
Nagase H.
Abe A.
Portoghese PS.
J.
Org. Chem.
1989,
54:
4120
<A NAME="RU04309ST-17A">17a</A>
Carlsen PHJ.
Katsuki T.
Martin VS.
Sharpless
KB.
J. Org. Chem.
1981,
46:
3936
<A NAME="RU04309ST-17B">17b</A>
Courtney JL. In
Organic Syntheses
by Oxidation with Metal Compounds
Mijis WJ.
de Jonge CRHI.
Plenum Press;
New York:
1986.
p.445-467
<A NAME="RU04309ST-17C">17c</A>
Murahashi S.
Komiya N. In
Ruthenium
in Organic Synthesis
Murahashi S.
Wiley-VCH;
Weinheim:
2004.
p.53-93
<A NAME="RU04309ST-17D">17d</A>
Bernd P.
Synthesis
2005,
2453
TPAP (tetra-n-propylammonium
perruthenate) was also used in organic synthesis. See the following
reviews:
<A NAME="RU04309ST-18A">18a</A>
Ley SV.
In Comprehensive in Organic
Synthesis
Vol. 7:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.305-327
<A NAME="RU04309ST-18B">18b</A>
Griffith WP.
Chem. Soc. Rev.
1992,
21:
179
<A NAME="RU04309ST-18C">18c</A>
Ley SV.
Norman J.
Griffith WP.
Synthesis
1994,
639
<A NAME="RU04309ST-19A">19a</A>
Sheehan JC.
Tulis RW.
J. Org. Chem.
1974,
39:
2264
<A NAME="RU04309ST-19B">19b</A>
Bettoni G.
Franchini C.
Morlacchi F.
Tangari N.
Tortorella V.
J.
Org. Chem.
1976,
41:
2780
<A NAME="RU04309ST-19C">19c</A>
Yoshifuji S.
Tanaka K.
Nitta Y.
Chem.
Pharm. Bull.
1985,
33:
1749
<A NAME="RU04309ST-19D">19d</A>
Yoshifuji S.
Arakawa Y.
Nitta Y.
Chem.
Pharm. Bull.
1985,
33:
5042
<A NAME="RU04309ST-19E">19e</A>
Yoshifuji S.
Tanaka K.
Kawai T.
Nitta Y.
Chem. Pharm. Bull.
1985,
33:
5515
<A NAME="RU04309ST-19F">19f</A>
Yoshifuji S.
Tanaka K.
Kawai T.
Nitta Y.
Chem. Pharm. Bull.
1986,
34:
3873
<A NAME="RU04309ST-19G">19g</A>
Kaname M.
Yoshifuji S.
Sashida H.
Tetrahedron
Lett.
2008,
49:
2786
<A NAME="RU04309ST-20">20</A> Compound 1f:
Horikiri H.
Kawamura K.
Heterocycles
2004,
63:
865
<A NAME="RU04309ST-21">21</A>
Oxidation of Amine
with OsO
4
Stoichiometric Reaction Conditions: Conditions
I
To the solution of amine in pyridine was added OsO4 (3
mol equiv) and stirred at r.t. for the time indicated in Tables
[¹]
and
[²]
. The aqueous solution
of Na2SO3 was added to the reaction mixture
and stirred vigorously at r.t. for several hours. The resulting
mixture was evaporated under reduced pressure and extracted with
CHCl3. The organic layer was washed with brine and dried
over Na2SO4. After removing the solvent under
reduced pressure, the residue was purified by silica gel column
chromatography and/or preparative TLC.
Catalytic Reaction Conditions: Conditions II
Amine
was added to the solution of K3Fe(CN)6 (9
mol equiv), K2CO3 (9 mol equiv), and OsO4 (0.1
mol equiv) in t-BuOH and distilled H2O
(1:1) and stirred at r.t. for the time indicated in Tables
[¹]
and
[²]
. To the reaction mixture
was added the aqueous solution of Na2SO3 and
stirred at r.t. for several hours. The resulting mixture was poured
into distillated H2O and extracted with CHCl3.
The organic layer was dried over Na2SO4 and
concentrated under reduced pressure. The residue was purified by
silica gel column chromatography and/or preparative TLC.
<A NAME="RU04309ST-22">22</A>
Amide 2a
¹H
NMR (300 MHz, CDCl3): δ = 0.67-1.25
(m, 5 H), 1.44-1.86 (m, 6 H), 1.93-2.02 (m, 0.7
H), 2.07-2.15 (m, 0.3 H), 2.54-2.63 (m, 0.3 H),
2.62 (d, J = 18.3
Hz, 0.7 H), 2.76 (d, J = 18.0
Hz, 0.3 H), 2.90 (dd, J = 5.9,
18.3 Hz, 0.7 H), 3.00 (dd, J = 5.4,
18.0 Hz, 0.3 H), 3.05-3.18 (m, 0.7 H), 3.76-3.93
(m, 2 H), 3.89 (s, 3 H), 3.96-4.09 (m, 1.7 H), 4.14-4.24 (m,
1 H), 4.38-4.47 (m, 0.3 H), 4.49 (s, 1 H), 4.65 (br s,
0.3 H), 5.10-5.16 (m, 0.7 H), 6.64 (br d, J = 8.4
Hz, 1 H), 6.78 (d, J = 8.1
Hz, 1 H). IR (film): 3467, 2947, 1632, 1502, 1437, 1261, 1168, 1017
cm-¹. HRMS-FAB: m/z calcd for C23H28NO5 [M + H]+:
398.1962; found: 398.1976.
Ketolactam 3
¹H
NMR (300 MHz, CDCl3): δ = 1.31-1.58
(m, 2 H), 1.66-1.82 (m, 2 H), 2.63-2.73 (m, 1
H), 2.78-2.96 (m, 2 H), 3.71-4.03 (m, 4 H), 3.87
(s, 3 H), 4.20-4.29 (m, 1 H), 5.42 (s, 1 H), 6.67 (d, J = 8.1 Hz,
1 H), 6.86 (d, J = 8.4
Hz, 1 H), 7.74 (br s, 1 H). IR (film): 1736, 1694 cm-¹.
HRMS-FAB: m/z calcd
for C19H20NO6 [M + H]+:
358.1291; found: 358.1300.
Ketolactam
4a
¹H NMR (300 MHz, CDCl3): δ = 0.28-0.40
(m, 2 H), 0.49-0.69 (m, 2 H), 1.03-1.18 (m, 1
H), 1.35-1.61 (m, 2 H), 1.66-1.86 (m, 2 H), 2.67-2.76
(m, 1 H), 2.78 (dd, J = 4.2,
17.7 Hz, 1 H), 2.93 (dd, J = 6.9,
14.1 Hz, 1 H), 3.04 (dd, J = 1.2,
17.7 Hz, 1 H), 3.75-4.10 (m, 5 H), 3.86 (s, 3 H), 4.21-4.29
(m, 1 H), 5.40 (s, 1 H), 6.65 (d, J = 8.1
Hz, 1 H), 6.84 (d, J = 8.1 Hz,
1 H). IR (film): 2923, 1733, 1670 cm-¹.
HRMS-FAB: m/z calcd
for C23H26NO6 [M + H]+:
412.1760; found: 412.1776.
Hydroxylactam
5a
¹H NMR (300 MHz, CDCl3): δ = 0.21-0.36
(m, 2 H), 0.45-0.65 (m, 2 H), 0.99-1.13 (m, 1
H), 1.17-1.35 (m, 1 H), 1.51-1.77 (m, 3 H), 2.60-2.71
(m, 2 H), 2.76 (dd, J = 7.1,
14.0 Hz, 1 H), 2.89 (br d, J = 17.4
Hz, 1 H), 3.71-4.00 (m, 6 H), 3.87 (s, 3 H), 4.17-4.25
(m, 1 H), 5.17 (s, 1 H), 6.59 (d, J = 8.1 Hz,
1 H), 6.79 (d, J = 8.1
Hz, 1 H). One proton of the OH group was not observed. IR (film):
3294, 2928, 1623, 1503, 1439, 1276, 1194, 1055 cm-¹.
HRMS-FAB: m/z calcd
for C23H28NO6 [M + H]+:
414.1917; found: 414.1896.
Lactam 6a
¹H
NMR (300 MHz, CDCl3): δ = 0.21-0.34
(m, 2 H), 0.45-0.63 (m, 2 H), 0.98-1.12 (m, 1
H), 1.18-1.35 (m, 1 H), 1.52-1.77 (m, 3 H), 2.35
(dt, J = 12.7,
3.7 Hz, 1 H), 2.61 (d, J = 17.1
Hz, 1 H), 2.60-2.77 (m, 2 H), 2.72 (d, J = 17.4
Hz, 1 H), 2.93 (dd, J = 1.2,
17.4 Hz, 1 H), 3.73-3.81 (m, 1 H), 3.84-4.02 (m,
4 H), 3.87 (s, 3 H), 4.20 (dt, J = 5.2,
6.8 Hz, 1 H), 4.49 (s, 1 H), 6.60 (d, J = 8.4
Hz, 1 H), 6.77 (d, J = 8.1 Hz,
1 H). IR (film): 2923, 1635, 1504, 1440 cm-¹.
HRMS-FAB: m/z calcd
for C23H28NO5 [M + H]+:
398.1967; found: 398.1962.
Iminoketone
7
¹H NMR (400 MHz, CDCl3): δ = 1.28-1.41
(m, 1 H), 1.44-1.54 (m, 1 H), 1.68-1.78 (m, 2
H), 2.45 (ddd, J = 3.2,
4.3, 12.3 Hz, 1 H), 2.91 (ddd, J = 0.8,
5.4, 17.9 Hz, 1 H), 2.96 (ddd, J = 0.7,
2.0, 17.8 Hz, 1 H), 3.77-3.82 (m, 1 H), 3.86 (s, 3 H),
3.91 (dt, J = 7.3,
6.5 Hz, 1 H), 4.00 (q, J = 6.6
Hz, 1 H), 4.24 (ddd, J = 5.4,
6.8, 7.1 Hz, 1 H), 4.54 (ddd, J = 1.8,
3.3, 6.7 Hz, 1 H), 5.32 (s, 1 H), 6.66 (d, J = 8.2
Hz, 1 H), 6.84 (d, J = 8.2
Hz, 1 H), 7.70 (d, J = 1.5
Hz, 1 H). IR (film): 2928, 1710, 1606, 1503, 1440, 1279, 1187, 1061
cm-¹. HRMS-FAB: m/z calcd for C19H20NO5 [M + H]+:
342.1341; found: 342.1335.