Subscribe to RSS
DOI: 10.1055/s-0029-1218274
Transition-Metal-Catalyzed Rearrangement of 1,1-(Oligomethylene)-4-aryl-2-butene-1,4-diols: Ring Expansion vs. Aryl Group Migration
Publication History
Publication Date:
09 October 2009 (online)

Abstract
The transition-metal-catalyzed rearrangement of 1,1-(oligomethylene)-4-aryl-2-butene-1,4-diols was investigated. In the presence of PdCl2(MeCN)2 and Cu(OTf)2, a rapidly equilibrating 1,3-isomerization is followed by 1,2-migration to produce cyclopentanones or cyclohexanones through expansion of four- or five-membered ring systems. When employing larger ring systems or acyclic cores, aryl migration provides 2-aryl aldehydes.
Key words
rearrangements - alkenes - diols - transition metals - catalysis
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Fittig R. Justus Liebigs Ann. Chem. 1859, 110: 23Reference Ris Wihthout Link - 1b
Butlerov A. Justus Liebigs Ann. Chem. 1874, 174: 125Reference Ris Wihthout Link - 1c
Mundy BP.Otzenberger RD. J. Org. Chem. 1973, 38: 2109Reference Ris Wihthout Link - 2 For an Essay on the discovery, see:
Berson JA. Angew. Chem. Int. Ed. 2002, 114: 4849 - 3
Collins CJ. Q. Rev. Chem. Soc. 1960, 14: 357 - For recent examples, see inter alia:
- 4a
Suzuki K.Takikawa H.Hachisu Y.Bode JW. Angew. Chem. Int. Ed. 2007, 46: 3252Reference Ris Wihthout Link - 4b
Reisman SE.Ready JM.Hasuoka A.Smith CJ.Wood JL. J. Am. Chem. Soc. 2006, 128: 1448Reference Ris Wihthout Link - 4c
Alvarez-Manzaneda E.Chahboun R.Barranco I.Cabrera E.Alvarez E.Lara A.Alvarez-Manzaneda R.Hmamouchi M.Es-Samti H. Tetrahedron 2007, 63: 11943Reference Ris Wihthout Link - 4d
Frongia A.Girard C.Ollivier J.Piras PP.Secci F. Synlett 2008, 2823Reference Ris Wihthout Link - 5a
Trost BM.Lee DC. J. Am. Chem. Soc. 1988, 110: 6556Reference Ris Wihthout Link - 5b
Trost BM.Brandi A. J. Am. Chem. Soc. 1984, 106: 5041Reference Ris Wihthout Link - 5c
Sworin M.Neumann WL. J. Org. Chem. 1988, 53: 4894Reference Ris Wihthout Link - 5d
Nakamura T.Matsui T.Tanino K.Kuwajima I. J. Org. Chem. 1997, 62: 3032Reference Ris Wihthout Link - 5e
Youn J.-H.Lee J.Cha JK. Org. Lett. 2001, 3: 2935Reference Ris Wihthout Link - For a review on Prins pinacol cascades, see:
- 6a
Overman LE.Pennington LD. J. Org. Chem. 2003, 68: 7143Reference Ris Wihthout Link - For selected examples and synthetic applications, see:
- 6b
Grese TA.Hutchinson KD.Overman LE. J. Org. Chem. 1993, 58: 2468Reference Ris Wihthout Link - 6c
Hirst GC.Johnson TO.Overman LE. J. Am. Chem. Soc. 1993, 115: 2992Reference Ris Wihthout Link - 6d
Mulzer J.Greifenberg S.Buschmann J.Luger P. Angew. Chem., Int. Ed. Engl. 1993, 32: 1173Reference Ris Wihthout Link - 6e
MacMillan DWC.Overman LE.Pennington LD. J. Am. Chem. Soc. 2001, 123: 9033Reference Ris Wihthout Link - 7 For a review on the use of carbophilic
Lewis acids in combination with pinacol-type rearrangments, see:
Crone B.Kirsch SF. Chem. Eur. J. 2008, 14: 3514 - For our works in the field, see:
- 8a
Kirsch SF.Binder JT.Crone B.Duschek A.Haug TT.Liébert C.Menz H. Angew. Chem. Int. Ed. 2007, 46: 2310Reference Ris Wihthout Link - 8b
Menz H.Binder JT.Crone B.Duschek A.Haug TT.Kirsch SF.Klahn P.Liébert C. Tetrahedron 2009, 65: 1880Reference Ris Wihthout Link - 8c
Kirsch SF.Binder JT.Liébert C.Menz H. Angew. Chem. Int. Ed. 2006, 45: 5878Reference Ris Wihthout Link - 8d
Binder JT.Crone B.Kirsch SF.Liébert C.Menz H. Eur. J. Org. Chem. 2007, 1636Reference Ris Wihthout Link - 8e
Crone B.Kirsch SF. J. Org. Chem. 2007, 72: 5435Reference Ris Wihthout Link - 8f
Baskar B.Bae HJ.An SE.Cheong JY.Rhee YH.Duschek A.Kirsch SF. Org. Lett. 2008, 10: 2605Reference Ris Wihthout Link - 9a
Wassermann HH.Cochoy RE.Baird MS. J. Am. Chem. Soc. 1969, 91: 2375Reference Ris Wihthout Link - 9b
Wassermann HH.Hearn MJ.Cochoy R. J. Org Chem. 1980, 45: 2874Reference Ris Wihthout Link - 9c
Wienand A.Reissig H.-U. Chem. Ber. 1991, 124: 957Reference Ris Wihthout Link - 9d
Nishimura T.Ohe K.Uemura S. J. Am. Chem. Soc. 1999, 121: 2645Reference Ris Wihthout Link - 9e
Hegedus LS.Ranslow PB. Synthesis 2000, 953Reference Ris Wihthout Link - 9f
Nishimura T.Ohe K.Uemura S. J. Org. Chem. 2001, 66: 1455Reference Ris Wihthout Link - 9g
Markham JP.Staben ST.Toste FD. J. Am. Chem. Soc. 2005, 127: 9708Reference Ris Wihthout Link - For seminal works, see:
- 10a
Ollivier J.Legros J.-Y.Fiaud J.-C.de Meijere A.Salaün J. Tetrahedron Lett. 1990, 31: 4135Reference Ris Wihthout Link - 10b
Ollivier J.Salaün J. Tetrahedron Lett. 1984, 25: 1269Reference Ris Wihthout Link - 10c
Salaün J.Karkour B. Tetrahedron Lett. 1988, 29: 1537Reference Ris Wihthout Link - 10d
Funayama S.Eda S.Komiyama K.Ohmura S.Tokunaga T. Tetrahedron Lett. 1989, 30: 3151Reference Ris Wihthout Link - 10e
Salaün J.Karkour B. Tetrahedron Lett. 1987, 28: 4669Reference Ris Wihthout Link - 11 For an asymmetric Wagner-Meerwein
shift related to this pinacol rearrangement, see:
Trost BM.Yasukata T.
J. Am. Chem. Soc. 2001, 123: 7162 - 12a
Lutz RE.Bass RG.Boykin DW. J. Org. Chem. 1964, 29: 3660Reference Ris Wihthout Link - 12b
Saito K.Horie Y.Mukai T.Toda T. Bull. Chem. Soc. Jpn. 1985, 58: 3118Reference Ris Wihthout Link - 12c
Uyehara T.Kawai Y.Yamada J.-i.Kato T. Chem Lett. 1987, 16: 137Reference Ris Wihthout Link - Protic acid catalysis:
- 14a
Braude EA.Fawcett JS.Newman DDE. J. Chem. Soc. 1950, 793Reference Ris Wihthout Link - 14b
Braude EA.Jones ERH.Stern ES. J. Chem. Soc. 1946, 396Reference Ris Wihthout Link - 14c
Braude EA.Jones ERH. J. Chem. Soc. 1944, 436Reference Ris Wihthout Link - 14d
Braude E.Stern E. J. Chem. Soc. 1947, 1096Reference Ris Wihthout Link - 14e
Sanz R.Martínez A.Miguel D.Álvarez-Gutiérres JM.Rodríguez F. Adv. Synth. Catal. 2006, 348: 1841Reference Ris Wihthout Link - Lewis acid catalysis:
- 15a
Mukhopadhyay M.Reddy MM.Maikap GC.Iqbal J. J. Org. Chem. 1995, 60: 2670Reference Ris Wihthout Link - 15b
Li C.-J.Wang D.Chen D.-L. J. Am. Chem. Soc. 1995, 117: 12867Reference Ris Wihthout Link - 15c
Malkov AV.Baxendale I.Mansfield DJ.Kocovsky P. Tetrahedron Lett. 1995, 38: 6351Reference Ris Wihthout Link - 15d
Morrill C.Beutner GL.Grubbs RH. J. Org. Chem. 2006, 71: 7813Reference Ris Wihthout Link - 15e
Kitamura M.Hayashi H.Yano M.Tanaka T.Maezaki M. Heterocycles 2007, 71: 2669Reference Ris Wihthout Link - 16 For a related case, see inter alia:
Wang J.Huang W.Zhang Z.Xiang X.Liu R.Zhou X. J. Org. Chem. 2009, 74: 3299 - 19 For the construction of seven-membered
ring systems through pinacol-type ring expansion, see the following review:
Kantorowski EJ.Kurth MJ. Tetrahedron 2000, 56: 4317 - 23a
Kenyon J.Partridge SM.Phillips H. J. Chem. Soc. 1937, 207Reference Ris Wihthout Link - 23b See also:
Vikhe YS.Hande SM.Kawai N.Uenishi J. J. Org. Chem. 2009, 74: 5174Reference Ris Wihthout Link
References and Notes
Exposure of six-membered ring substrate 1c to 5 mol% of PPTS at 23 ˚C in CH2Cl2 provided an inseparable mixture of 3c and 4c in low yields (e.g., 29% after 14 h).
17Reaction of 1b in the presence of MgBr2 (5 mol%) led to clean formation of 4b without traces of 2b (or 3b).
18
Synthesis of (
E
)-2-(4-Methoxystyryl)cyclohexanone
(2b)
Cu(OTf)2 (1 mg, 0.003 mmol, 1 mol%)
was added to a solution of (E)-1-(4-methoxyphenyl)-3-(1-(triethylsilyl-oxy)cyclopentyl)prop-2-en-1-ol
(1c, 100 mg, 0.28 mmol) in CH2Cl2 (2.8
mL) and stirred at r.t. for 30 min (until TLC analysis indicated
complete conversion). The reaction mixture was concentrated under
reduced pressure, and the residue was purified by flash chromatography
on silica (pentanes-Et2O = 95:5).
Compound 2b was obtained as a colorless
solid in 96% yield (62 mg, 0.27 mmol). ¹H
NMR (360 MHz, CDCl3): δ = 1.69-1.83
(m, 3 H), 1.89-1.96 (m, 1 H), 2.01-2.09 (m, 1
H), 2.14-2.20 (m, 1 H), 2.31-2.40 (m, 1 H), 2.45-2.51
(m, 1 H), 3.17 (ddd, J = 0.9,
6.4, 11.3 Hz, 1 H), 3.80 (s, 3 H), 6.27 (dd, J = 5.9,
16.1 Hz, 1 H), 6.33 (d, J = 16.1
Hz, 1 H), 6.77-6.91 (m, 2 H), 7.29-7.33 (m, 2
H). ¹³C NMR (90.6 MHz, CDCl3): δ = 24.4
(t), 27.6 (t), 34.5 (t), 41.7 (t), 54.0 (d), 55.3 (d), 113.9 (d),
125.3 (d), 127.4 (d), 130.0 (s), 130.8 (d), 159.0 (s), 211.3 (s).
LRMS (EI): m/z = 230
(100)[M+], 202 (26), 173 (25),
159 (21), 134 (38), 121 (37). HRMS: m/z calcd
for C15H18O2 [M+]:
230.1307; found: 230.1307.
Synthesis of 3-Cyclohexylidene-2-(4-methoxyphenyl)-propanal
(3a)
Following the procedure to prepare 2b,¹8 allylic alcohol 1g (100 mg, 0.26 mmol) was converted into
the corresponding aldehyde 3a in the presence
of Cu(OTf)2 (1 mg, 1 mol%). The reaction mixture
was concentrated under reduced pressure, and the residue was purified
by flash chromatography on silica (pentanes-Et2O = 95:5). Compound 3a was obtained in 79% yield (50
mg, 0.20 mmol). ¹H NMR (360 MHz, CDCl3): δ = 1.45-1.59
(m, 6 H), 2.12-2.20 (m, 4 H), 3.80 (s, 3 H), 4.41 (dd, J = 2.6, 8.8
Hz, 1 H), 5.39-5.46 (m, 1 H), 6.88-6.94 (m, 2
H), 7.13-7.19 (m, 2 H), 9.55 (d, J = 2.6
Hz, 1 H). ¹³C NMR (90.6 MHz, CDCl3): δ = 26.6,
27.6, 28.5, 29.6, 37.3, 55.3, 56.3, 114.4, 115.1, 128.9, 129.4,
145.7, 158.8, 198.5. LRMS (EI): m/z = 244
(2) [M+], 215 (100), 147 (23),
121 (25). HRMS: m/z calcd for
C16H20O2 [M+]:
244.1463; found: 244.1468.
We also observed a high-yielding elimination when using 2-butene-1,4-diols that possess Bz-protected primary allylic alcohols. According to preliminary studies, this elimination appears to be quite general (Scheme [7] ).

Scheme 7
In seminal studies on related 1,3-isomerizations of phenylpropenyl carbinols, chirality transfer was reported:
24This correlates with the migratory aptitude observed in Wagner-Meerwein shifts.