References and Notes
For reviews, see:
<A NAME="RS11009ST-1A">1a </A>
Tietze LF.
Chem. Rev.
1996,
96:
115
<A NAME="RS11009ST-1B">1b </A>
Trost BM.
Angew. Chem., Int. Ed. Engl.
1995,
34:
259
<A NAME="RS11009ST-1C">1c </A>
Malacria M.
Chem.
Rev.
1996,
96:
289
<A NAME="RS11009ST-1D">1d </A>
Burke MD.
Schreiber SL.
Angew.
Chem. Int. Ed.
2004,
43:
46
Selected examples:
<A NAME="RS11009ST-2A">2a </A>
Koh JH.
Gagné MR.
Angew. Chem.
Int. Ed.
2004,
116:
3459
<A NAME="RS11009ST-2B">2b </A>
Ishinashi H.
Ishihara K.
Yamamoto Y.
J.
Am. Chem. Soc.
2004,
126:
11122
<A NAME="RS11009ST-2C">2c </A> For a review, see:
Enders D.
Grondal C.
Huettl MRM.
Angew. Chem. Int. Ed.
2007,
46:
1570
For recent reviews, see:
<A NAME="RS11009ST-3A">3a </A>
Jiménez-Núnez E.
Echavarren AM.
Chem.
Rev.
2008,
108:
3326
<A NAME="RS11009ST-3B">3b </A>
Gorin DJ.
Sherry BD.
Toste FD.
Chem. Rev.
2008,
108:
3351
<A NAME="RS11009ST-3C">3c </A>
Michelet V.
Toullec PY.
Genêt J.-P.
Angew. Chem. Int. Ed.
2008,
47:
4268
<A NAME="RS11009ST-3D">3d </A>
Hashmi ASK.
Chem. Rev.
2007,
107:
3180
<A NAME="RS11009ST-3E">3e </A>
Fürstner A.
Davies PW.
Angew. Chem.
Int. Ed.
2007,
46:
3410
For selected recent examples, see:
<A NAME="RS11009ST-4A">4a </A>
Barluenga J.
Vázquez-Villa H.
Merino I.
Ballesteros A.
González JM.
Chem. Eur. J.
2006,
12:
5790
<A NAME="RS11009ST-4B">4b </A>
Barluenga J.
Vázquez-Villa H.
Ballesteros A.
González JM.
J.
Am. Chem. Soc.
2003,
125:
9028
<A NAME="RS11009ST-4C">4c </A>
Crone B.
Kirsch SF.
J. Org. Chem.
2007,
72:
5435
<A NAME="RS11009ST-4D">4d </A>
Ding Q.
Chen Z.
Yu X.
Peng Y.
Wu J.
Tetrahedron Lett.
2009,
50:
340
<A NAME="RS11009ST-4E">4e </A>
Chen Z.
Ding Q.
Yu X.
Wu J.
Adv. Synth. Catal.
2009,
351:
1692
For iodonium-induced cyclization
of two tethered π-bonds:
<A NAME="RS11009ST-5A">5a </A>
Schreiner PR.
Prall M.
Lutz V.
Angew.
Chem. Int. Ed.
2003,
42:
5757
<A NAME="RS11009ST-5B">5b </A>
Pandey G.
Gadre SR.
Acc. Chem. Res.
2004,
37:
201
<A NAME="RS11009ST-5C">5c </A>
Barluenga J.
Romanelli GP.
Alvarez-García LJ.
Llorente I.
González JM.
García-Rodríguez E.
García-Granda S.
Angew.
Chem. Int. Ed.
1998,
37:
3136
<A NAME="RS11009ST-5D">5d </A> For a prototypical iodocarbonate cyclization
of olefin, see:
Duan JJ.-W.
Smith AB.
J. Org. Chem.
1993,
58:
3703
<A NAME="RS11009ST-6A">6a </A>
Kang J.-E.
Lee E.-S.
Park S.-I.
Shin S.
Tetrahedron Lett.
2005,
46:
7431
<A NAME="RS11009ST-6B">6b </A>
Kang J.-E.
Shin S.
Synlett
2006,
717
<A NAME="RS11009ST-6C">6c </A>
Lim C.
Kang J.-E.
Lee J.-E.
Shin S.
Org. Lett.
2007,
9:
3539
<A NAME="RS11009ST-6D">6d </A>
Lee E.-S.
Yeom H.-S.
Hwang J.-H.
Shin S.
Eur. J. Org. Chem.
2007,
3503
<A NAME="RS11009ST-6E">6e </A>
Robles-Machín R.
Adrio J.
Carretero JC.
J. Org. Chem.
2006,
71:
5023
<A NAME="RS11009ST-6F">6f </A>
Hashmi ASK.
Salathé R.
Frey W.
Synlett
2007,
1763
<A NAME="RS11009ST-6G">6g </A>
Buzas A.
Gagosz F.
Synlett
2006,
2727
<A NAME="RS11009ST-6H">6h </A>
Buzas A.
Gagosz F.
Org. Lett.
2006,
8:
515
<A NAME="RS11009ST-6I">6i </A>
Istrate F.
Buzas A.
Dias Jurberg I.
Odabachian Y.
Gagosz F.
Org.
Lett.
2008,
10:
925
<A NAME="RS11009ST-6J">6j </A>
Buzas A.
Istrate F.
Le Goff XF.
Odabachian Y.
Gagosz F.
J. Organomet. Chem.
2009,
694:
515
<A NAME="RS11009ST-6K">6k </A>
Buzas A.
Istrate FM.
Gagosz F.
Tetrahedron
2009,
65:
1889
<A NAME="RS11009ST-6L">6l </A>
Cheong JY.
Bae HJ.
Baskar B.
Thangadurai D.
Kim M.-J.
Rhee YH.
Bull. Korean
Chem. Soc.
2009,
30:
1239
For selected examples of gold-catalyzed
1,n-enyne cyclizations, see:
<A NAME="RS11009ST-7A">7a </A>
Nieto-Oberhuber C.
Munoz MP.
Bunuel E.
Nevado C.
Cárdenas DJ.
Echavarren AM.
Angew.
Chem. Int. Ed.
2004,
43:
2402
<A NAME="RS11009ST-7B">7b </A>
Luzung MR.
Markham JP.
Toste FD.
J. Am. Chem. Soc.
2004,
126:
10858
<A NAME="RS11009ST-7C">7c </A>
Zhang L.
Kozmin SA.
J. Am. Chem. Soc.
2005,
127:
6962
<A NAME="RS11009ST-7D">7d </A>
Buzas AK.
Istrate FM.
Gagosz F.
Angew. Chem. Int. Ed.
2007,
46:
1141
<A NAME="RS11009ST-7E">7e </A>
Kirsch SF.
Binder JT.
Duschek A.
Haug TT.
Liébert C.
Menz H.
Angew. Chem.
Int. Ed.
2007,
46:
2310
Similar reactivities in 1,6-enynes, see:
<A NAME="RS11009ST-7F">7f </A>
Baskar B.
Bae HJ.
An SE.
Cheong JY.
Rhee YH.
Duschek A.
Kirsch SF.
Org.
Lett.
2008,
10:
2605
<A NAME="RS11009ST-7G">7g </A>
Bae HJ.
Baskar B.
An SE.
Cheong JY.
Thangadurai DT.
Hwang I.-C.
Rhee YH.
Angew. Chem. Int. Ed.
2008,
47:
2263
<A NAME="RS11009ST-7H">7h </A>
Kirsch SF.
Synthesis
2008,
3183
<A NAME="RS11009ST-7I">7i </A>
Bohringer S.
Gagosz F.
Adv. Synth. Catal.
2008,
350:
2617
<A NAME="RS11009ST-7J">7j </A>
Huang X.
Zhang L.
Org. Lett.
2007,
9:
4627
<A NAME="RS11009ST-7K">7k </A>
Karmakar S.
Kim A.
Oh
CH.
Synthesis
2009,
194
<A NAME="RS11009ST-8A">8a </A>
Kang J.-E.
Kim H.-B.
Lee J.-W.
Shin S.
Org.
Lett.
2006,
8:
3537
For an experimental comparison of the rate of halogenation
on alkene and alkyne, see:
<A NAME="RS11009ST-8B">8b </A>
Yates K.
Schmid GH.
Regulski TW.
Garratt DG.
Leung
H.-W.
McDonald R.
J.
Am. Chem. Soc.
1973,
95:
160
For a recent review comparing metal-catalyzed and iodonium-triggered
reactions, see:
<A NAME="RS11009ST-8C">8c </A>
Yamamoto Y.
Gridnev ID.
Patil NT.
Jin T.
Chem. Commun.
2009,
5075
<A NAME="RS11009ST-9">9 </A>
Key spectral feature of monoalkene
carbonation products 3 is as follows: Chemical
shift (δ) of CH2 I peak is ca. 3.5 ppm (¹ H
NMR), and 5-15 ppm (¹³ C NMR)
depending on the diastereomer. Proton and carbon correlation of
these resonances is apparent in HSQC spectra of compounds 3 .
<A NAME="RS11009ST-10">10 </A> For similar studies on olefin carbonation,
see:
Bongini A.
Cardillo G.
Orena M.
Porzi G.
Sandri S.
J. Org. Chem.
1982,
47:
4626
<A NAME="RS11009ST-11">11 </A>
The structural and stereochemical
identity of the iodocarbonate products 4 were
confirmed by the conversion of 4f /4g into 7f /7g (Scheme
[² ]
),
respectively, by the radical deiodination as below. Spectra of 7f /7g matched
those of the respective products obtained in Au(I) catalysis.6c For 4o and 4q , relative
stereochemistry was based on 1D-NOE spectra.
Scheme 2
<A NAME="RS11009ST-12">12 </A>
The assignment of iodobromination
products 5 was based on the following experiments:
i) LRMS (CI) fragmentation data containing 79 Br/8¹ Br
isotope, ii) 1D-NOE spectra of 5g , iii) conversion
of 5o into 4o′ (diastereomer
of 4o ) by Ag(I)-promoted carbonation, iv)
conversion of 5o into 6o by
E2 elimination (NaOMe), and v) the reaction of 2n with ICl into a mixture of 4n and iodochlorinated product 7n (Scheme
[³ ]
), corresponding
to 5n .
Scheme 3
For recent reviews on the theoretical
aspects of electrophilic metal-alkyne complexes, see:
<A NAME="RS11009ST-13A">13a </A>
Gorin DJ.
Toste FD.
Nature
(London)
2007,
446:
395
<A NAME="RS11009ST-13B">13b </A>
Toste FD.
Nature Chem.
2009,
1:
482
<A NAME="RS11009ST-13C">13c </A>
Fürstner A.
Morency L.
Angew. Chem.
Int. Ed.
2008,
47:
5030 ;
see also ref. 8c for the related 1,5-enyne cyclization trapping
with carboxylic acid
<A NAME="RS11009ST-14A">14a </A>
Okazaki T.
Laali KK.
J.
Org. Chem.
2005,
70:
9139
<A NAME="RS11009ST-14B">14b </A>
Okazaki T.
Laali KK.
J. Org. Chem.
2006,
71:
9643
<A NAME="RS11009ST-15">15 </A>
For a hydride addition on an alkyne:
Strozier R. W., Caramella, P.; Houk, K. N. J.
Am. Chem. Soc. 1979 , 79, 1340;
for addition of a weaker nucleophile (olefin in this case) having
a later TS, preferential attack of alkyne should be even more pronounced.
<A NAME="RS11009ST-16">16 </A>
However, in the formation of 4h , 4k , and 4n /5n , diastereomeric
products having trans- 1,2-vicinal relationship
between the two methyl bearing centers were not observed. This observation
indicates some degree of concertedness of C-C and C-O
bond formations (or less likely, stereoelectronically driven nucleophilic
trapping of the cationic center).
<A NAME="RS11009ST-17">17 </A>
Typical Procedure
for the IBr-Promoted Tandem Cyclization
To a solution
of 2f (57.3 mg, 0.200 mmol) in CH2 Cl2 (1
mL) at -78 ˚C was added dropwise a solution
of IBr (82.7 mg, 0.400 mmol) in CH2 Cl2 (1
mL). The mixture was kept stirred at -78 ˚C for
20 min, then aq sat. Na2 S2 O3 (4
mL) was added at once. The mixture was allowed to warm to r.t. with stirring.
Layers were separated, and the aqueous layer was extracted with
CH2 Cl2 (3 × 4 mL). The combined organic layers
were dried (MgSO4 ), evaporated, and the residue was purified
by silica gel chromatography (EtOAc-hexane = 1:6)
to yield 57.5 mg (81%) of 4f as
a white solid (mp 154-156 ˚C). Compound 4f : IR (neat): 2916, 1800, 1436, 1350,
1185, 1057 cm-¹ . ¹ H
NMR (400 MHz, CDCl3 ): δ = 7.45-7.28
(m, 3 H), 7.28-7.15 (m, 2 H), 4.60 (t, J = 3.0
Hz, 1 H), 3.32 (dd, J = 2.2,
16.9 Hz, 1 H), 2.97 (dd, J = 2.6,
17.0 Hz, 1 H), 2.93 (d, J = 15.8
Hz, 1 H), 2.52 (d, J = 15.8
Hz, 1 H), 1.60 (s, 3 H). ¹³ C NMR (100
MHz, CDCl3 ): d = 154.5, 144.5, 144.0, 129.1,
128.6, 128.2, 88.7, 83.6, 82.0, 44.7, 42.7, 26.7. HRMS: m/z calcd for C14 H13 INaO3 [M + Na]+ :
378.9807; found: 378.9809. Compound 4g :
white solid; mp 114-115 ˚C. IR (neat): 2921, 1790,
1506, 1246, 1052 cm-¹ . ¹ H
NMR (400 MHz, CDCl3 ): δ = 7.18 (d, J = 8.8 Hz,
2 H), 6.89 (d, J = 8.5
Hz, 2 H), 4.58 (t, J = 2.9
Hz, 1 H), 3.82 (s, 3 H), 3.31 (dd, J = 2.2,
16.9 Hz, 1 H), 2.96 (dd, J = 2.5,
16.9 Hz, 1 H), 2.92 (d, J = 15.8
Hz, 1 H), 2.51 (d, J = 15.8
Hz, 1 H), 1.60 (s, 3 H). ¹³ C NMR (100 MHz,
CDCl3 ): δ = 159.8, 154.5, 144.0, 136.3,
129.6, 114.3, 88.1, 83.7, 82.0, 55.9, 44.8, 42.9, 26.7. Anal Calcd
for C15 H15 IO4 : C, 46.65; H, 3.92.
Found: C, 45.60; H, 4.10. LRMS (CI+ ): m/z calcd for C15 H16 IO4 [M+ + H]:
387; found: 387 (100) [M+ + H],
343 (6) [M+ + H - CO2 ],
325 (67) [M+ + H - CO2 - H2 O]. Compound 5g : colorless liquid. IR (neat): 2968,
2926, 1738, 1506, 1279, 1246, 1156, 1085 cm-¹ . ¹ H
NMR (400 MHz, CDCl3 ): δ = 7.10 (d, J = 8.4 Hz,
2 H), 6.89 (d, J = 8.8
Hz, 2 H), 5.00 (t, J = 4.7
Hz, 1 H), 3.82 (s, 3 H), 3.44 (d br, J = 18.7
Hz, 1 H), 3.07 (d of ABq, J = 7.9
Hz, 1 H), 3.00 (d of ABq, J = 7.9
Hz, 1 H), 2.94 (d br, J = 18.7
Hz, 1 H), 1.81 (s, 3 H), 1.52 (s, 9 H). ¹³ C
NMR (100 MHz, CDCl3 ): δ = 159.6, 153.3,
141.2, 137.9, 129.7, 114.3, 93.1, 83.6, 61.4, 55.9, 47.7, 45.7,
28.8, 28.4. LRMS (CI+ ): m/z calcd
for C19 H25
79 BrIO4 [M+ + H]:
523; found: 523 (24) [M+ + H, 79 Br],
525 (24) [M+ + H, 8¹ Br],
467 (10) [M+ + H - C4 H8 , 79 Br],
469 (8) [M+ + H - C4 H8 , 8¹ Br],
443 (6) [M+ - 79 Br],
405 (37) [M+ + H - C4 H8 - CO2 - H2 O, 79 Br],
407 (36) [M+ + H - C4 H8 - CO2 - H2 O, 8¹ Br]. Compound 4n : white solid; mp 105-107 ˚C.
IR (NaCl): 2916, 2850, 1790, 1601, 1511, 1350, 1246, 1057 cm-¹ . ¹ H NMR
(400 MHz, CDCl3 ): δ = 7.12 (d, J = 8.8 Hz,
2 H), 6.90 (d, J = 8.4
Hz, 2 H), 4.55 (t, J = 3.7
Hz, 1 H), 3.82 (s, 3 H), 3.24-3.16 (m, 2 H), 2.95 (q, J = 7.3 Hz,
1 H), 1.58 (s, 3 H), 1.07 (d, J = 7.3
Hz, 3 H). ¹³ C NMR (100 MHz, CDCl3 ): δ = 159.8,
154.6, 149.6, 136.7, 130.0, 129.8, 114.4, 89.0, 86.0, 81.9, 55.9,
46.3, 43.8, 25.0, 13.4. ES-HRMS: m/z calcd
for C16 H17 IO4 Na [M + Na]+ :
423.0069; found: 423.0068. Compound 5n :
pale yellow liquid. IR (NaCl): 2916, 2930, 1743, 1601, 1506, 1365,
1279, 1242, 1156 cm-¹ . ¹ H
NMR (400 MHz, CDCl3 ): δ = 7.16 (d, J = 8.4 Hz,
2 H), 6.91 (d, J = 8.8
Hz, 2 H), 5.49 (dd, J = 3.3,
7.7 Hz, 1 H), 4.03 (q, J = 6.9
Hz, 1 H), 3.82 (s, 3 H), 3.37 (dd, J = 7.7,
17.3 Hz, 1 H), 2.77 (dd, J = 3.3,
17.2 Hz, 1 H), 1.70 (d, J = 7.0
Hz, 3 H), 1.51 (s, 9 H), 1.14 (s, 3 H). ¹³ C
NMR (100 MHz, CDCl3 ): δ = 159.9,
153.6, 152.8, 131.2, 129.5, 114.3, 95.2, 83.1, 78.3, 60.4, 57.4,
55.8, 50.7, 28.4, 21.8, 18.7. LRMS (CI+ ): m/z calcd for C20 H26
79 BrIO4 [M+ + H]:
537; found: 537 (22) [M+ + H, 79 Br],
539 (22) [M+ + H, 8¹ Br],
481 (26) [M+ + H - C4 H8 , 79 Br],
483 (24) [M+ + H - C4 H8 , 8¹ Br],
419 (52) [M+ - BocO, 79 Br],
421 (51) [M+ - BocO, 8¹ Br],
401 (100) [M+ - Br - C4 H8 , 79 Br].