Abstract
The first synthesis of (+)-kuraramine via oxidative
cleavage of (-)-N -methylcytisine
is reported. An alternative but unsuccessful approach to (+)-kuraramine
is also described based on extending an intramolecular enolate addition
protocol that had previously been applied successfully to cytisine.
Key words
cytisine - kuraramine - alkaloids
References and Notes
<A NAME="RD36309ST-1">1 </A> For a review of the lupin alkaloids,
see:
Leonard NJ. In The Alkaloids: Chemistry and Physiology
Vol.
3:
Manske RHF.
Holmes HL.
Academic
Press;
New York:
1953.
p.119-192
<A NAME="RD36309ST-2">2 </A> For a review of the synthetic routes
to cytisine, see:
Stead D.
O’Brien P.
Tetrahedron
2007,
63:
1885
For an overview of the pharmacology
of cytisine, see:
<A NAME="RD36309ST-3A">3a </A>
Cassels BK.
Bermudez I.
Dajas F.
Abin-Carriquiry JA.
Wonnacott S.
Drug Discovery Today
2005,
10:
1657
<A NAME="RD36309ST-3B">3b </A>
Marks MJ.
Whiteaker P.
Collins AC.
Mol. Pharmacol.
2006,
70:
947
<A NAME="RD36309ST-3C">3c </A>
Luetje CW.
Patrick J.
J.
Neurosci.
1991,
11:
837
<A NAME="RD36309ST-4">4 </A>
Power FB.
Salway AH.
J. Chem. Soc.
1913,
191
<A NAME="RD36309ST-5">5 </A>
Murakoshi I.
Kidoguchi E.
Haginiwa J.
Ohmiya S.
Higashiyama K.
Otomasu H.
Phytochemistry
1981,
20:
1407
<A NAME="RD36309ST-6">6 </A>
Honda T.
Takahashi R.
Namiki H.
J.
Org. Chem.
2005,
70:
499
<A NAME="RD36309ST-7">7 </A>
Rouden J.
Ragot A.
Gouault S.
Cahard D.
Plaquevent JC.
Lasne MC.
Tetrahedron: Asymmetry
2002,
13:
1299
<A NAME="RD36309ST-8A">8a </A>
Houllier N.
Gouault S.
Lasne MC.
Rouden J.
Tetrahedron
2006,
62:
11679
<A NAME="RD36309ST-8B">8b </A>
Chellappan SK.
Xiao YX.
Tueckmantel W.
Kellar KJ.
Kozikowski AP.
J. Med. Chem.
2006,
49:
2673
<A NAME="RD36309ST-9">9 </A>
For silane 4 ,
the key NMR signals [¹ H NMR (500 MHz, CDCl3 ): δ = 4.34
(1 H, d, J = 1.0
Hz, H10) and ¹³ C NMR (126 MHz, CDCl3 ): δ = 54.2
(C10)] showed the presence of a single diastereomer. The
small coupling constant (J = 1.0 Hz)
suggested an equatorial-equatorial coupling between H9
and H10. The equatorial assignment of H10 was further supported
by NOE data: irradiation of H10 showed enhancements of H9, H11 and
SiCH3 , while irradiation of H8ax and H8eq showed
no enhancement associated with H10.
<A NAME="RD36309ST-10A">10a </A>
Fleming I.
Henning R.
Plaut H.
J. Chem. Soc., Chem. Commun.
1984,
29
<A NAME="RD36309ST-10B">10b </A>
Fleming I.
Sanderson PEJ.
Tetrahedron
Lett.
1987,
28:
4229
<A NAME="RD36309ST-10C">10c </A>
Tamao K.
Ishida N.
Kumada M.
J.
Org. Chem.
1983,
48:
2120
<A NAME="RD36309ST-10D">10d </A>
Tamao K.
Ishida N.
Tanaka T.
Kumada M.
Organometallics
1983,
2:
1694
<A NAME="RD36309ST-10E">10e </A> For a review on the oxidation
of carbon-silicon bonds, see:
Jones GR.
Landais Y.
Tetrahedron
1996,
52:
7599
<A NAME="RD36309ST-11">11 </A>
For carbinol 5 ,
the key NMR signal [¹ H NMR (400 MHz, CDCl3 ): δ = 5.80
(1 H, s, H10)] showed the presence of a single diastereomer
and suggested the same (likely thermodynamic) stereochemical preference
as silane 4 .
<A NAME="RD36309ST-12A">12a </A>
Gray D.
Gallagher T.
Angew.
Chem. Int. Ed.
2006,
45:
2419
<A NAME="RD36309ST-12B">12b </A>
Botuha C.
Galley CMS.
Gallagher T.
Org. Biomol. Chem.
2004,
2:
1825
<A NAME="RD36309ST-13">13 </A>
Key NMR signals for aldehyde 9 : ¹ H NMR (400 MHz, CDCl3 ): δ = 9.63
(1 H, s, H10). ¹³ C NMR (101 MHz, CDCl3 ): δ = 200.3
(C10).
<A NAME="RD36309ST-14A">14a </A>
Katritzky AR.
Arrowsmith J.
Binbahari Z.
Jayaram C.
Siddiqui T.
Vassilatos S.
J.
Chem. Soc., Perkin Trans. 1
1980,
2851
<A NAME="RD36309ST-14B">14b </A>
Meghani P.
Joule J.
J. Chem. Soc., Perkin Trans.
1
1988,
1
<A NAME="RD36309ST-15">15 </A>
Supporting Information (as a pdf)
is available with this paper and contains full experimental details
of all compounds reported and copies of spectra, including NOE experiments.