Abstract
Phosphonium and benzotriazolyloxy (and related) intermediates
are easily prepared by the reactions of cyclic amides and ureas
with (1H -benzotriazol-1-yloxy)triaminophosphonium hexafluorophosphate
related reagents. The former intermediates could also be made available
using analogous phosphonium reagents prepared in situ or from commercial
sources. These intermediates efficiently lead to carbon-nitrogen,
carbon-oxygen, carbon-sulfur, and carbon-carbon
bond formations through nucleophilic aromatic substitution reactions
with various nucleophiles. A new reaction involving the
generation of phenols in situ from arylboronic acids and oxygen
under palladium(0) catalysis or with boronic acids and hydrogen
peroxide is reviewed.
1 Introduction
2 Phosphonium-Mediated Nucleophilic Aromatic Substitution Reactions
of Heterocyclic Systems
2.1 Phosphonium-Mediated Carbon-Nitrogen Bond Forming Reactions
via Modified Appel Conditions
2.2 Phosphonium-Mediated Carbon-Nitrogen Bond Forming Reactions
via Commercially Available Phosphonium Reagents
2.2.1 (1H -Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium
Hexafluorophosphate as an Activating Agent
2.2.2 (1H -Benzotriazol-1-yloxy)tripyrrolidinylphosphonium Hexafluorophosphate
and Bromotripyrrolidinylphosphonium Hexafluorophosphate as Activating
Agents
2.2.3 Solvent and Base Effects
2.3 Reactivity of Various Phosphonium Reagents
2.4 Phosphonium-Mediated Carbon-Oxygen, Carbon-Sulfur, and
Carbon-Carbon Bond Forming Reactions
3 Benzotriazolyloxy-Mediated and Related Bond-Forming Reactions
of Heterocyclic Systems
4 Phosphonium-Mediated Reaction Mechanisms
4.1 Stepwise Pathways via Phosphonium and 1H -Benzotriazol-1-ol
(or Pyridotriazol-1-ol) Adducts
4.2 1H -Benzotriazol-1-ol (or Pyridotriazol-1-ol)
Adduct Independent Pathway
5 Palladium-Catalyzed Heteroaryl Ether Formation from Benzotriazolyloxy-
or Pyridotriazolyloxy-Substituted Heterocycles with Arylboronic
Acids
6 Unusual 1H -Benzotriazol-1-ol Adduct
Rearrangement
7 A Tentative Protection and Amination Strategy Involving a 1H -Benzotriazol-1-ol Adduct
8 Conclusion and Outlook
Key words
phosphonium - benzotriazoles - nucleophilic
aromatic substitutions - aryl ethers - aminations
References
For representative examples, see:
<A NAME="RA54909ST-1A">1a </A>
Suhadolnik RJ.
Nucleosides as Biological
Probes
Wiley;
New York:
1979.
<A NAME="RA54909ST-1B">1b </A>
Srivastava PC.
Robins RK.
Meyer RB. In Chemistry
of Nucleosides and Nucleotides
Vol. 1:
Townsend LB.
Plenum;
New
York:
1988.
p.113-281
<A NAME="RA54909ST-1C">1c </A>
Han S.
Harris CM.
Harris TM.
Kim H.-YH.
Kim SJ.
J. Org. Chem.
1996,
61:
174
<A NAME="RA54909ST-1D">1d </A>
Simons C.
Wu Q.
Htar TT.
Curr.
Top. Med. Chem.
2005,
5:
1191 ; and
references cited therein
<A NAME="RA54909ST-2">2 </A> For recent syntheses, see:
Yoon DS.
Han Y.
Stark TM.
Haber JC.
Gregg BT.
Stankovich SB.
Org. Lett.
2004,
6:
4775 ; and references cited therein
For representative reviews on the
pharmaceutical and clinical applications of quinazolinamines, see:
<A NAME="RA54909ST-3A">3a </A>
Fry DW.
Kraker AJ.
McMichael A.
Ambroso LA.
Nelson JM.
Leopold WR.
Connors RW.
Bridges AJ.
Science
(Washington, DC, U.S.)
1994,
265:
1093
<A NAME="RA54909ST-3B">3b </A>
Bridges AJ.
Chem. Rev.
2001,
101:
2541
<A NAME="RA54909ST-3C">3c </A>
Liao
JJ.-L.
J. Med. Chem.
2007,
50:
409
For the role of guanidines and amidines in chiral catalysis,
see:
<A NAME="RA54909ST-3D">3d </A>
Corey EJ.
Grogan MJ.
Org.
Lett.
1999,
1:
157
<A NAME="RA54909ST-3E">3e </A>
Weiss ME.
Fischer DF.
Xin Z.-q.
Jautze S.
Schweizer WB.
Peters R.
Angew.
Chem. Int. Ed.
2006,
45:
5694
<A NAME="RA54909ST-3F">3f </A>
Shen J.
Nguyen TT.
Goh Y.-P.
Ye W.
Fu X.
Xu J.
Tan C.-H.
J. Am. Chem.
Soc.
2006,
128:
13692
<A NAME="RA54909ST-3G">3g </A>
Jautze S.
Seiler P.
Peters R.
Angew.
Chem. Int. Ed.
2007,
46:
1260
<A NAME="RA54909ST-3H">3h </A>
Fischer DF.
Xin Z.-q.
Peters R.
Angew. Chem. Int. Ed.
2007,
46:
7704
For a few representative examples,
see:
<A NAME="RA54909ST-4A">4a </A>
Maruenda H.
Chenna A.
Liem L.-K.
Singer B.
J. Org. Chem.
1998,
63:
4385
<A NAME="RA54909ST-4B">4b </A>
Van Brocklin HF.
Lim JK.
Coffing SL.
Hom DL.
Negash K.
Ono MY.
Gilmore JL.
Bryant I.
Riese DJII.
J.
Med. Chem.
2005,
48:
7445
<A NAME="RA54909ST-4C">4c </A>
Wissner A.
Floyd MB.
Johnson BD.
Fraser H.
Ingalls C.
Nittoli T.
Dushin RG.
Discafani C.
Nilakantan R.
Marini J.
Ravi M.
Cheung K.
Tan X.
Musto S.
Annable T.
Siegel MM.
Loganzo F.
J.
Med. Chem.
2005,
48:
7560
<A NAME="RA54909ST-4D">4d </A>
Mishani E.
Abourbeh G.
Jacobson O.
Dissoki S.
Daniel RB.
Rozen Y.
Shaul M.
Levitzki A.
J. Med. Chem.
2005,
48:
5337
<A NAME="RA54909ST-4E">4e </A>
Domarkas J.
Dudouit F.
Williams C.
Qiyu Q.
Banerjee R.
Brahimi F.
Jean-Claude BJ.
J.
Med. Chem.
2006,
49:
3544
For general Buchwald-Hartwig
aminations, see:
<A NAME="RA54909ST-5A">5a </A>
Wagaw S.
Buchwald SL.
J. Org. Chem.
1996,
61:
7240
<A NAME="RA54909ST-5B">5b </A>
Old DW.
Wolfe JP.
Buchwald SL.
J. Am. Chem. Soc.
1998,
120:
9722
<A NAME="RA54909ST-5C">5c </A>
Wolfe JP.
Wagaw S.
Marcoux J.-F.
Buchwald SL.
Acc.
Chem. Res.
1998,
31:
805
<A NAME="RA54909ST-5D">5d </A>
Hartwig JF.
Angew. Chem. Int. Ed.
1998,
37:
2046
<A NAME="RA54909ST-5E">5e </A>
Hartwig JF.
Acc. Chem. Res.
1998,
31:
852
<A NAME="RA54909ST-6A">6a </A>
Castro B.
Dormoy JR.
Evin G.
Selve C.
Tetrahedron Lett.
1975,
16:
1219
<A NAME="RA54909ST-6B">6b </A>
Coste J.
Frérot E.
Jouin P.
J.
Org. Chem.
1994,
59:
2437
<A NAME="RA54909ST-6C">6c </A>
Campagne
J.-M.
Coste J.
Jouin P.
J.
Org. Chem.
1995,
60:
5214
For ester formation, see:
<A NAME="RA54909ST-6D">6d </A>
Kim MH.
Patel DV.
Tetrahedron Lett.
1994,
35:
5603
<A NAME="RA54909ST-6E">6e </A>
Coste J.
Campagne J.-M.
Tetrahedron Lett.
1995,
36:
4253
<A NAME="RA54909ST-7A">7a </A>
Castro B.
Chapleur Y.
Gross B.
Selve C.
Tetrahedron Lett.
1972,
13:
5001
<A NAME="RA54909ST-7B">7b </A>
Castro B.
Selve C.
Tetrahedron Lett.
1973,
14:
4459
<A NAME="RA54909ST-7C">7c </A>
See also ref. 6a
<A NAME="RA54909ST-7D">7d </A>
Downie IM.
Heaney H.
Kemp G.
Tetrahedron
Lett.
1988,
44:
2619
<A NAME="RA54909ST-7E">7e </A>
See also ref. 6c; and
references cited therein.
<A NAME="RA54909ST-8">8 </A>
Wan Z.-K.
Binnun E.
Wilson D.
Lee J.
Org. Lett.
2005,
7:
5877
<A NAME="RA54909ST-9">9 </A>
Wan Z.-K.
Wacharasindhu S.
Binnun E.
Mansour T.
Org. Lett.
2006,
8:
2425
<A NAME="RA54909ST-10">10 </A>
Wan Z.-K.
Wacharasindhu S.
Levins C.
Lin M.
Tabei K.
Mansour TS.
J. Org. Chem.
2007,
72:
10194
<A NAME="RA54909ST-11">11 </A>
De Napoli L.
Messere A.
Montesarchio D.
Piccialli G.
Santacroce C.
Nucleosides
Nucleotides
1991,
10:
1719
<A NAME="RA54909ST-12">12 </A>
De Napoli L.
Messere A.
Montesarchio D.
Piccialli G.
Santacroce C.
Varra M.
J. Chem. Soc., Perkin Trans.
1
1994,
923
<A NAME="RA54909ST-13">13 </A>
Appel R.
Angew.
Chem. Int. Ed. Engl.
1975,
14:
801
<A NAME="RA54909ST-14A">14a </A>
Véliz EA.
Beal PA.
Tetrahedron Lett.
2000,
41:
1695
The same methodology was also used for the bromination of
6-bromopurine ribonucleosides; see:
<A NAME="RA54909ST-14B">14b </A>
Véliz EA.
Beal PA.
J.
Org. Chem.
2001,
66:
8592
<A NAME="RA54909ST-15">15 </A>
Hans JJ.
Deriver RW.
Burke SD.
J. Org. Chem.
1999,
64:
1430
<A NAME="RA54909ST-16">16 </A>
Bae S.
Lakshman MK.
J. Org. Chem.
2008,
73:
1311
<A NAME="RA54909ST-17">17 </A>
Lin X.
Robins MJ.
Org. Lett.
2000,
2:
3497
<A NAME="RA54909ST-18A">18a </A>
Janeba Z.
Lin X.
Robins MJ.
Nucleosides, Nucleotides Nucleic
Acids
2004,
23:
137
<A NAME="RA54909ST-18B">18b </A>
Zhong M.
Nowak I.
Cannon JF.
Robins MJ.
J. Org. Chem.
2006,
71:
4216
<A NAME="RA54909ST-18C">18c </A>
Zhong M.
Nowak I.
Robins MJ.
Org.
Lett.
2005,
7:
4601
<A NAME="RA54909ST-19">19 </A>
Wan Z.-K.
Lee J.
Hotchandani R.
Moretto A.
Binnun E.
Wilson DP.
Kirincich SJ.
Follows BC.
Ipek M.
Xu W.
Joseph-McCarthy D.
Zhang Y.-L.
Tam M.
Erbe DV.
Tobin JF.
Li W.
Tam SY.
Mansour TS.
Wu J.
ChemMedChem
2008,
3:
1525 ; and references cited therein
<A NAME="RA54909ST-20">20 </A>
Lee, J.; Wan, Z.-K.; Wilson, D.; Chenail,
E. unpublished results.
For representative examples, see:
<A NAME="RA54909ST-21A">21a </A>
Nair V.
Richardson SG.
J. Org. Chem.
1980,
45:
3969
<A NAME="RA54909ST-21B">21b </A>
See also ref. 1c
<A NAME="RA54909ST-21C">21c </A>
Liu J.
Janeba Z.
Robins MJ.
Org.
Lett.
2004,
6:
2917
For recent reviews, see:
<A NAME="RA54909ST-21D">21d </A>
Lakshman MK.
J. Organomet. Chem.
2002,
653:
234
<A NAME="RA54909ST-21E">21e </A>
Hocek M.
Eur.
J. Org. Chem.
2003,
245
<A NAME="RA54909ST-22">22 </A>
Robins MJ.
Basom GL.
Can. J. Chem.
1973,
51:
3161
<A NAME="RA54909ST-23A">23a </A>
Lee H.
Luna E.
Hinz M.
Stezowski JJ.
Kiselyov AS.
Harvey RG.
J.
Org. Chem.
1995,
60:
5604
<A NAME="RA54909ST-23B">23b </A>
Maruenda H.
Chenna A.
Liem L.-K.
Singer B.
J. Org. Chem.
1998,
63:
4385
<A NAME="RA54909ST-23C">23c </A>
Lakshman MK.
Sayer JM.
Jerina DM.
J. Am. Chem. Soc.
1991,
113:
6589
<A NAME="RA54909ST-23D">23d </A>
Kim SJ.
Harris CM.
Jung K.-Y.
Koreeda M.
Harris TM.
Tetrahedron Lett.
1991,
32:
6073
<A NAME="RA54909ST-24A">24a </A>
Lakshman MK.
Keeler JC.
Hilmer JH.
Martin
JQ.
J. Am. Chem. Soc.
1999,
121:
6090
<A NAME="RA54909ST-24B">24b </A>
De Riccardis F.
Bonala RR.
Johnson F.
J.
Am. Chem. Soc.
1999,
121:
10453
<A NAME="RA54909ST-24C">24c </A>
Elmquist CE.
Stover JS.
Wang Z.
Rizzo
CJ.
J.
Am. Chem. Soc.
2004,
126:
11190
<A NAME="RA54909ST-24D">24d </A>
Dai Q.
Ran C.
Harvey RG.
Org.
Lett.
2005,
7:
999
<A NAME="RA54909ST-25">25 </A>
Sung WL.
J.
Org. Chem.
1982,
47:
3623
<A NAME="RA54909ST-26">26 </A>
Mansour TS.
Evans CA.
Siddiqui MA.
Charron M.
Zacharie B.
Nguyen-Ba N.
Lee N.
Korba B.
Nucleosides
Nucleotides
1997,
16:
993
<A NAME="RA54909ST-27A">27a </A>
Harvey RG.
Polycyclic
Aromatic Hydrocarbons: Chemistry and Carcinogenicity
Cambridge
University;
Cambridge / UK:
1991.
<A NAME="RA54909ST-27B">27b </A>
Glatt H.
Seidel A.
Harvey
RG.
Coughtrie MWH.
Mutagenesis
1994,
9:
553
<A NAME="RA54909ST-28">28 </A>
Seela F.
Herdering W.
Kehne A.
Helv.
Chim. Acta
1987,
70:
1649
<A NAME="RA54909ST-29">29 </A>
Printz M.
Richert C.
Chem. Eur. J.
2009,
15:
3390
<A NAME="RA54909ST-30">30 </A>
Wu W.
Stupi BP.
Litosh VA.
Mansouri D.
Farley D.
Morris S.
Metzker S.
Metzker ML.
Nucleic Acids Res.
2007,
35:
6339
<A NAME="RA54909ST-31">31 </A>
Sakkar S.
Perlstein EO.
Imarisio S.
Pineau S.
Cordenier A.
Maglathlin RL.
Webster JA.
Lewis
TA.
O’Kane CJ.
Schreiber SL.
Rubinsztein DC.
Nat.
Chem. Biol.
2007,
3:
331
<A NAME="RA54909ST-32">32 </A>
Peng Z.-H.
Journet M.
Humphrey G.
Org.
Lett.
2006,
8:
395
Isolation:
<A NAME="RA54909ST-33A">33a </A>
Miller CO.
Skoog F.
Von Saltza MH.
Strong FM.
J.
Am. Chem. Soc.
1955,
77:
1392
<A NAME="RA54909ST-33B">33b </A>
Miller CO.
Skoog F.
Okumura FS.
Von Saltza MH.
Strong FM.
J. Am. Chem. Soc.
1956,
78:
1375
Syntheses, see:
<A NAME="RA54909ST-33C">33c </A>
Villar JDF.
Motta MA.
Nucleosides,
Nucleotides Nucleic Acids
2000,
19:
1005
<A NAME="RA54909ST-33D">33d </A>
See also ref. 33b
<A NAME="RA54909ST-34">34 </A>
Barciszewski J.
Mielcarek M.
Stobiecki M.
Siboska G.
Clark BFC.
Biochem. Biophys. Res. Commun.
2000,
279:
69
<A NAME="RA54909ST-35">35 </A> For a recent review on kinetin,
see:
Barciszewski J.
Rattan SIS.
Siboska G.
Clark BFC.
Plant Sci.
1999,
148:
37
For representative biological activities,
see:
<A NAME="RA54909ST-36A">36a </A>
Hartwell
LH.
Kastan MB.
Science
(Washington, DC, U.S.)
1994,
266:
1821
For recent six- to nine-step syntheses, see:
<A NAME="RA54909ST-36B">36b </A>
Nugiel DA.
Cornelius LAM.
Corbett JW.
J. Org. Chem.
1997,
62:
201
<A NAME="RA54909ST-36C">36c </A>
Dorff PH.
Garigipati RS.
Tetrahedron
Lett.
2001,
42:
2771
<A NAME="RA54909ST-36D">36d </A>
Hammarström LGJ.
Smith DB.
Talamás FX.
Labadie SS.
Krauss
NE.
Tetrahedron
Lett.
2002,
43:
8071
<A NAME="RA54909ST-37">37 </A>
Levins CG.
Wan Z.-K.
Org. Lett.
2008,
10:
1755 ; and references cited therein for conventional
syntheses
<A NAME="RA54909ST-38A">38a </A>
Madhavan R.
Srinivasan VR.
Indian
J. Chem.
1969,
7:
760
<A NAME="RA54909ST-38B">38b </A>
Confalone PN.
Woodward RB.
J.
Am. Chem. Soc.
1983,
105:
902
<A NAME="RA54909ST-38C">38c </A>
Deshmukh MB.
Shelar MA.
Mulik AR.
Indian J. Heterocycl. Chem.
2000,
10:
13
For the direct amination of oxadiazole-2-thiones, see:
<A NAME="RA54909ST-38D">38d </A>
Laddi UV.
Desai SR.
Bennur RS.
Bennur SC.
Indian
J. Heterocycl. Chem.
2002,
11:
319
<A NAME="RA54909ST-38E">38e </A>
Honnalli SS.
Ronad PM.
Vijaybhasker K.
Jukkeri VI.
Kumar R.
Heterocycl. Commun.
2005,
11:
505
<A NAME="RA54909ST-39A">39a </A>
Smith AEW.
Science (Washington,
DC, U.S.)
1954,
119:
514
<A NAME="RA54909ST-39B">39b </A>
Stempel A.
Zelauskas J.
Aeschlimann JA.
J.
Org. Chem.
1955,
20:
412
<A NAME="RA54909ST-39C">39c </A>
Rosen GM.
Popp FD.
Gemmill FQ.
J. Heterocycl. Chem.
1971,
8:
659
<A NAME="RA54909ST-39D">39d </A>
Thompson SK.
Smith WW.
Zhao B.
Halbert SM.
Tomaszek TA.
Tew DG.
Levy MA.
Janson CA.
D’Alessio KJ.
McQueney MS.
Kurdyla J.
Jones CS.
DesJarlais RL.
Abdel-Meguid SS.
Veber DF.
J. Med. Chem.
1998,
41:
3923
<A NAME="RA54909ST-40">40 </A>
Grzyb JA.
Dekeyser MA.
Batey RA.
Synthesis
2005,
2384
<A NAME="RA54909ST-41">41 </A>
Clemens JJ.
Davis MD.
Lynch KR.
Macdonald TL.
Bioorg. Med. Chem.
Lett.
2004,
14:
4903
<A NAME="RA54909ST-42">42 </A>
Anand NK.
Blazey CM.
Bowles OJ.
Bussenius J.
Canne Bannen L.
Chan DS.-M.
Chen B.
Co EW.
Costanzo S.
Defina SC.
Dubenko L.
Franzini M.
Huang P.
Jammalamadaka V.
Khoury RG.
Kim MH.
Klein RR.
Le DT.
Mac MB.
Nuss JM.
Parks JJ.
Rice KD.
Tsang T.
Tsuhako AL.
Wang Y.
Xu W. WO 2005117909
<A NAME="RA54909ST-43">43 </A>
Pritz S.
Wolf Y.
Klemm C.
Bienert M.
Tetrahedron Lett.
2006,
47:
5893
<A NAME="RA54909ST-44">44 </A>
Kang F.-A.
Kodah J.
Guan Q.
Li X.
Murray WV.
J.
Org. Chem.
2005,
70:
1957
<A NAME="RA54909ST-45">45 </A>
Kang F.-A.
Sui Z.
Murray WV.
Eur.
J. Org. Chem.
2009,
461
<A NAME="RA54909ST-46">46 </A>
Ashton TD.
Scammells PJ.
Aust. J. Chem.
2008,
61:
49
For example, the amination of guanosine
proceeded much better with DBU in acetonitrile:
<A NAME="RA54909ST-47A">47a </A>
Wan, Z.-K.; Binnun,
E. unpublished results.
<A NAME="RA54909ST-47B">47b </A>
Lakshman MK.
Frank J.
Org. Biomol.
Chem.
2009,
7:
2933
<A NAME="RA54909ST-48">48 </A>
These reactions were performed under
dilute conditions (0.02 M) to avoid problems with product or substrate solubility.
<A NAME="RA54909ST-49">49 </A>
Trace amounts of N
6 -dimethylamino-2′,3′,5′-tri-O -acetyladenosine were occasionally observed,
probably resulting from decomposition of DMF.
<A NAME="RA54909ST-50">50 </A>
Ashton TD.
Baker SP.
Hutchinson SA.
Scammells PJ.
Bioorg.
Med. Chem.
2008,
16:
1861
<A NAME="RA54909ST-51">51 </A>
Bae S.
Lakshman MK.
J. Am. Chem. Soc.
2007,
129:
782
<A NAME="RA54909ST-52">52 </A>
Xiao Z.
Yang MG.
Li P.
Carter PH.
Org. Lett.
2009,
11:
1421
<A NAME="RA54909ST-53">53 </A>
Boge N.
Kruger S.
Schroder M.
Meier C.
Synthesis
2007,
3907
<A NAME="RA54909ST-54">54 </A>
Rabisson P.
Lenz O.
Lin T.-I.
Surleraux D.
Chakravarty S.
Scholliers A.
Vermeiren K.
Delouvroy F.
Vervinnen T.
Simmen K.
Bioorg. Med. Chem. Lett.
2007,
17:
1843
<A NAME="RA54909ST-55A">55a </A>
Scicinski JJ.
Congreve MS.
Jamieson C.
Ley SV.
Newman ES.
Vinader VM.
Carr RAE.
J.
Comb. Chem.
2001,
2:
387
<A NAME="RA54909ST-55B">55b </A>
Hisamichi H.
Naito R.
Toyoshima A.
Kawano N.
Ichikawa A.
Orita A.
Orita M.
Hamada N.
Takeuchi M.
Ohta M.
Tsukamoto S.-i.
Bioorg.
Med. Chem.
2005,
13:
4936
<A NAME="RA54909ST-55C">55c </A>
Hisamichi H.
Naito R.
Toyoshima A.
Kawano N.
Ichikawa A.
Orita A.
Orita M.
Hamada N.
Takeuchi M.
Ohta M.
Tsukamoto S.-i.
Bioorg.
Med. Chem.
2005,
13:
6277
<A NAME="RA54909ST-55D">55d </A>
Reese CB.
Richards KH.
Tetrahedron
Lett.
1985,
26:
2245
<A NAME="RA54909ST-55E">55e </A>
Nagashima S.
Yokota M.
Nakai E.-i.
Kuromitsu S.
Ohga K.
Takeuchi M.
Tsukamoto S.-i.
Ohta M.
Bioorg. Med. Chem.
2007,
15:
1044
<A NAME="RA54909ST-56">56 </A> For a recent review on benzotriazole
chemistry, see:
Katritzky AR.
Rachwal S.
Chem. Rev.
2009, DOI: 10.1021/cr900204u
<A NAME="RA54909ST-57">57 </A>
Bae S.
Lakshman MK.
J. Org. Chem.
2008,
73:
3707
<A NAME="RA54909ST-58">58 </A>
Bae S.
Lakshman MK.
Org. Lett.
2008,
10:
2203
<A NAME="RA54909ST-59">59 </A>
Wacharasinhdu, S.; Wan, Z.-K.; Mansour,
T. S. unpublished results.
<A NAME="RA54909ST-60">60 </A>
Kang F.-A.
Sui Z.
Murray WV.
J.
Am. Chem. Soc.
2008,
130:
11300
<A NAME="RA54909ST-61">61 </A>
Wacharasindhu S.
Bardhan S.
Wan Z.-K.
Tabei K.
Mansour TS.
J.
Am. Chem. Soc.
2009,
131:
4174
<A NAME="RA54909ST-62">62 </A>
Long T.
Burgess K.
Chemtracts
1998,
11:
1037 ; and references cited therein
<A NAME="RA54909ST-63">63 </A>
Bardhan S.
Wacharasindhu S.
Wan Z.-K.
Mansour TS.
Org. Lett.
2009,
11:
2511
<A NAME="RA54909ST-64A">64a </A>
Navarro O.
Kaur H.
Mahjoor P.
Nolan SP.
J.
Org. Chem.
2004,
69:
3173
<A NAME="RA54909ST-64B">64b </A>
Li S.
Lin Y.
Cao J.
Zhang S.
J. Org. Chem.
2007,
72:
4067
<A NAME="RA54909ST-64C">64c </A>
Kirchhoff JH.
Netherton MR.
Hills ID.
Fu GC.
J.
Am. Chem. Soc.
2002,
124:
13662
<A NAME="RA54909ST-64D">64d </A>
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
<A NAME="RA54909ST-64E">64e </A>
Suzuki A.
Pure
Appl. Chem.
1991,
63:
419
<A NAME="RA54909ST-65">65 </A> For Buchwald’s phosphine
ligand (DTBBP), see:
Aranyos A.
Old DW.
Kiyomori A.
Wolfe JP.
Sadighi JP.
Buchwald SL.
J. Am. Chem. Soc.
1999,
121:
4369
<A NAME="RA54909ST-66A">66a </A>
Adamo C.
Amatore C.
Ciofini I.
Jutand A.
Lakmini H.
J. Am. Chem. Soc.
2006,
128:
6829
<A NAME="RA54909ST-66B">66b </A>
Aramendia
MA.
Lafont M.
Moreno-Manas M.
Perez M.
Pleixats R.
J. Org. Chem.
1999,
64:
3592
<A NAME="RA54909ST-66C">66c </A>
Hossain KM.
Kameyama T.
Shibata T.
Tagaki K.
Bull. Chem.
Soc. Jpn.
2001,
74:
2415
<A NAME="RA54909ST-66D">66d </A>
Wong MS.
Zhang XL.
Tetrahedron Lett.
2001,
42:
4087
<A NAME="RA54909ST-66E">66e </A>
Yoshida H.
Yamaryo Y.
Ohshita J.
Kunai A.
Tetrahedron Lett.
2003,
44:
1541
<A NAME="RA54909ST-66F">66f </A>
Hatamoto Y.
Sakaguchi S.
Ishii Y.
Org.
Lett.
2004,
6:
4623
<A NAME="RA54909ST-66G">66g </A>
Yamamoto Y.
Suzuki R.
Hattori K.
Nishiyama H.
Synlett
2006,
1027
<A NAME="RA54909ST-66H">66h </A>
Stahl SS.
Angew. Chem. Int. Ed.
2004,
43:
3400
<A NAME="RA54909ST-66I">66i </A>
Popp BV.
Stahl SS.
J.
Am. Chem. Soc.
2006,
128:
2804
<A NAME="RA54909ST-66J">66j </A>
Yoo KS.
Yoon CH.
Jung KW.
J. Am. Chem. Soc.
2006,
128:
16384
<A NAME="RA54909ST-67">67 </A>
Bardhan S.
Tabei K.
Wan Z.-K.
Mansour TS.
Tetrahedron Lett.
2009,
50:
5733
<A NAME="RA54909ST-68">68 </A>
Katritzky AR.
Kurz T.
Zhang S.
Voronkov M.
Heterocycles
2001,
55:
1703
<A NAME="RA54909ST-69">69 </A>
Carpino LA.
Imazumi H.
El-Faham A.
Ferrer FJ.
Zhang C.
Lee Y.
Foxman MM.
Henklein P.
Hanay C.
Mugge C.
Wenschuh H.
Klose J.
Beyermann M.
Bienert M.
Angew. Chem. Int. Ed.
2002,
41:
442
<A NAME="RA54909ST-70">70 </A>
While the toxicity profile of hexamethylphosphoramide (HMPA)
is well established, that for tris(N ,N -tetra-methylene)phosphoric acid triamide
(TTPT) has not been reported to the best of our knowledge. Because
of the close structural relationship of these compounds, experienced medicinal
chemists could easily assume similar toxic effects until TTPT is
tested or clear SARs have been established. Therefore, the same
precautions should be taken when handling these compounds! One of
the shared health concerns is that both liquid chemicals might cause respiratory
problems, despite the fact that both liquids have relatively high
boiling points (HMPA: 230-232 ˚C at 740 mmHg;
TTPT: 140-142 ˚C at 0.1 mmHg) and reasonable flash
points (HMPA: 144 ˚C, closed cup; TTPT: 112.8 ˚C, closed
cup. See Aldrich material safety data sheets for HMPA (product number
52730) and TTPT (product number 93404).