RSS-Feed abonnieren
DOI: 10.1055/s-0029-1219919
On the Hydrogenation of Glycosyl Oxazolines
Publikationsverlauf
Publikationsdatum:
06. Mai 2010 (online)

Abstract
An investigation is undertaken into the propensity of glycosyl oxazolines to undergo reductive cleavage by catalytic hydrogenation. Results indicate that the protecting groups on carbohydrate hydroxyl groups modulate the rate of glycosyl oxazoline reduction; electron-withdrawing ester groups curtail reaction so that reductive cleavage of benzyl ethers and esters, or reduction of azide elsewhere in the molecule may be readily achieved.
Key words
carbohydrates - oxazolines - hydrogenation - protecting groups - reactivity tuning
- 1
Banoub J.Boullanger P.Lafont D. Chem. Rev. 1992, 92: 1167 - 2a
Li B.Zeng Y.Hauser S.Song HJ.Wang L.-X.
J. Am. Chem. Soc. 2005, 127: 9692Reference Ris Wihthout Link - 2b
Li H.Li B.Song H.Breydo L.Baskakov IV.Wang L.-X. J. Org. Chem. 2005, 70: 9990Reference Ris Wihthout Link - 2c
Wang L.-X.Song HJ.Liu SW.Lu H.Jiang SB.Ni JH.Li HG. ChemBioChem 2005, 6: 1068Reference Ris Wihthout Link - 2d
Li H.Singh S.Zeng Y.Song H.Wang L.-X. Bioorg. Med. Chem. Lett. 2005, 15: 895Reference Ris Wihthout Link - 2e
Zeng Y.Wang JS.Li B.Hauser S.Li HG.Wang L.-X. Chem. Eur. J. 2006, 12: 3355Reference Ris Wihthout Link - 2f
Li B.Song H.Hauser S.Wang L.-X. Org. Lett. 2006, 8: 3081Reference Ris Wihthout Link - 2g
Umekawa M.Huang W.Li B.Fujita K.Ashida H.Wang L.-X.Yamamoto K. J. Biol. Chem. 2008, 283: 4469Reference Ris Wihthout Link - 2h
Wang L.-X. Carbohydr. Res. 2008, 343: 1509Reference Ris Wihthout Link - 2i
Huang W.Ochiai H.Zhang X.Wang L.-X. Carbohydr. Res. 2008, 343: 2903Reference Ris Wihthout Link - 2j
Wei Y.Li C.Huang W.Li B.Strome S.Wang L.-X. Biochemistry 2008, 47: 10294Reference Ris Wihthout Link - 2k
Ochiai H.Huang W.Wang L.-X. J. Am. Chem. Soc. 2008, 130: 13790Reference Ris Wihthout Link - 2l
Ochiai H.Huang W.Wang L.-X. Carbohydr. Res. 2009, 344: 592Reference Ris Wihthout Link - 2m
Huang W.Li C.Li B.Umekawa M.Yamamoto K.Zhang X.Wang L.-X.
J. Am. Chem. Soc. 2009, 131: 2214Reference Ris Wihthout Link - 3a
Rising TWDF.Claridge TDW.Davies N.Gamblin DP.Moir JWB.Fairbanks AJ. Carbohydr. Res. 2006, 341: 1574Reference Ris Wihthout Link - 3b
Rising TWDF.Claridge TDW.Moir JWB.Fairbanks AJ. ChemBioChem 2006, 7: 1177Reference Ris Wihthout Link - 3c
Rising TWDF.Heidecke CD.Moir JWB.Ling Z.Fairbanks AJ. Chem. Eur. J. 2008, 14: 6444Reference Ris Wihthout Link - 3d
Heidecke CD.Ling Z.Bruce NC.Moir JWB.Parsons TB.Fairbanks AJ. ChemBioChem 2008, 9: 2045Reference Ris Wihthout Link - 3e
Parsons TB.Moir JWB.Fairbanks AJ. Org. Biomol. Chem. 2009, 7: 3128Reference Ris Wihthout Link - 3f
Heidecke CD.Parsons TB.Fairbanks AJ. Carbohydr. Res. 2009, 344: 2433Reference Ris Wihthout Link - 3g
Parsons TB.Patel MK.Vocadlo DJ.Boraston AB.Fairbanks AJ. Org. Biomol. Chem. 2010, 8: 1861Reference Ris Wihthout Link - 4
Fujita M.Shoda S.-i.Haneda K.Inazu T.Takegawa K.Yamamoto K. Biochim. Biophys. Acta 2001, 1528: 9 - 6a
Takegawa K.Yamaguchi S.Kondo A.Kato I.Iwahara S. Biochem. Int. 1991, 25: 829Reference Ris Wihthout Link - 6b
Takegawa K.Tabuchi M.Yamaguchi S.Kondo A.Kato I.Iwahara S. J. Biol. Chem. 1995, 270: 3094Reference Ris Wihthout Link - 6c
Takegawa K.Yamabe K.Fujita K.Tabuchi M.Mita M.Izu H.Watanabe A.Asada Y.Sano M.Kondo A.Kato I.Iwahara S. Arch. Biochem. Biophys. 1997, 338: 22Reference Ris Wihthout Link - 6d
Fujita K.Takegawa K. Biochem. Biophys. Res. Commun. 2001, 283: 680Reference Ris Wihthout Link - 7a
Kadowaki S.Yamamoto K.Fujisaki M.Kumagai H.Tochikura T. Agric. Biol. Chem. 1988, 52: 2387Reference Ris Wihthout Link - 7b
Kadowaki S.Yamamoto K.Fujisaki M.Izumi K.Tochikura T.Yokoyama T. Agric. Biol. Chem. 1990, 54: 97Reference Ris Wihthout Link - 7c
Yamamoto K.Kadowaki S.Watanabe J.Kumagai H. Biochem. Biophys. Res. Commun. 1994, 203: 244Reference Ris Wihthout Link - 7d
Haneda K.Inazu T.Yamamoto K.Kumagai H.Nakahara Y.Kobata A. Carbohydr. Res. 1996, 292: 61Reference Ris Wihthout Link - 7e
Yamamoto K.Fujimori K.Haneda K.Mizuno M.Inazu T.Kumagai H. Carbohydr. Res. 1998, 305: 415Reference Ris Wihthout Link - 7f
Mizuno M.Haneda K.Iguchi R.Muramoto I.Kawakami T.Aimoto S.Yamamoto K.Inazu T. J. Am. Chem. Soc. 1999, 121: 284Reference Ris Wihthout Link - 7g
Fujita K.Kobayashi K.Iwamatsu A.Takeuchi M.Kumagai H.Yamamoto K. Arch. Biochem. Biophys. 2004, 432: 41Reference Ris Wihthout Link - 8
Jha R.Davis JT. Carbohydr. Res. 1995, 277: 125 - 9
Hesek D.Lee M.Yamaguchi T.Noll BC.Mobashery S. J. Org. Chem. 2008, 73: 7349 - 12
Bamford MJ.Pichel JC.Husman W.Patel B.Storer R.Weir NG. J. Chem. Soc., Perkin Trans. 1 1995, 1181 - 13
Danac R.Ball L.Gurr SJ.Muller T.Fairbanks AJ. ChemBioChem 2007, 8: 1241 - 17
Mootoo DR.Konradsson P.Udodong U.Fraser-Reid B. J. Am. Chem. Soc. 1988, 110: 5583 - 18a
Douglas NL.Ley SV.Lucking U.Warriner SL. J. Chem. Soc., Perkin Trans. 1 1998, 51Reference Ris Wihthout Link - 18b
Zhang Z.Ollmann IR.Ye XS.Wischnat R.Baasov T.Wong C.-H. J. Am. Chem. Soc. 1999, 121: 734Reference Ris Wihthout Link - 19
Noguchi M.Tanaka T.Gyakushi H.Kobayashi A.Shoda S.-i. J. Org. Chem. 2009, 74: 2210
References and Notes
http://www.cazy.org/fam/GH85.html.
10
Typical Procedure
for Catalytic Hydrogenation
Glycosyl oxazoline (ca.
20 mg), NaHCO3 (2 equiv), and Et3N (20 equiv)
were dissolved in a mixture of t-BuOH
(1.2 mL) and H2O (0.2 mL). The mixture was degassed and
put under an atmosphere of nitrogen. Palladium black was added,
and the mixture was then stirred at r.t. under an atmosphere of
hydrogen until TLC (EtOAc) indicated complete consumption of the
starting material (R
f
typically ca. 0.35), and the
formation of a polar product (R
f
= ca. 0.0). Mass spectrometric
analysis indicated the presence of a single product. The reaction
mixture was filtered through Celite,® the Celite® washed
twice with H2O (2 × 0.5 mL)
and the combined aqueous fractions lyophilized.
Selected Data for Compound 4 IR (KBr disc): νmax = 3425 (br, OH), 1646 (s, C=N) cm-¹. ¹H NMR (500 MHz, D2O): δ = 2.01 (3 H, s, CH3), 3.26 (1 H, at, J = 10.4 Hz, H-1ax), 3.39 (1 H, dt, J = 3.1, 9.3 Hz, H-5), 3.54 (1 H, at, J = 9.3 Hz, H-3), 3.60 (1 H, at, J = 9.3 Hz, H-4), 3.86-3.95 (2 H, m, H-1eq, H-2), 3.97-3.98 (2 H, m, H-6, H-6′). ¹³C NMR (125.8 MHz, D2O): δ = 21.9 (q, CH3), 51.3 (d, C-2), 62.9 (dt, C-6), 67.2 (t, C-1), 69.6 (d, C-4), 74.3 (d, C-3), 80.1 (dd, C-5), 174.6 (1 × s, C=O). ³¹P NMR (202.6 MHz, D2O): δ = 4.6. MS (ES-): m/z (%) = 284 (100) [M - H]-. HRMS (ES-): m/z calcd for C8H15NO8P [M - H]-: 284.0541; found: 284.0547.
14Selected Data for Compound 15
IR (KBr disc): νmax = 3320
(br, NH stretch), 1750 (s, C=O), 1671 (s, C=N),
1663 (s, C=O) cm-¹. ¹H
NMR (400 MHz, C6D6): δ = 1.61 [3
H, d, J
2a,CH3 = 2.7
Hz, N=C(CH3)], 1.68, 1.72, 1.77 (9
H, 3 × s, 3 × CH3),
3.49 (1 H, ddd, J
4,5 = 9.4
Hz, J
5,6 = 6.8 Hz, J
5,6
′ = 2.9
Hz, H-5), 3.74 (1 H, m, H-4), 4.37 (1 H, dd, J
6,6
′ = 12.3
Hz, J
5,6 = 6.8 Hz,
H-6), 4.53-4.63 (2 H, m, H-2, H-6′), 5.40 (1 H,
m, H-3), 5.52 (1 H, d, J
1,2 = 7.2
Hz, H-1), 6.66 (1 H, br d, J = 9.2
Hz, NH). ¹³C NMR (100 MHz, C6D6): δ = 13.4 [q,
C=N(CH3)], 20.3, 20.4, 22.5 (3 × q, 3 × CH3),
47.4 (d, C-2), 64.6 (d, C-4), 64.8 (t, C-6), 71.6 (d, C-5), 71.8
(d, C-3), 100.2 (d, C-1), 168.7 (s, C=N), 169.2, 170.1,
170.2 (3 × s, 3 × C=O).
MS (ES+): m/z (%) = 451 (100) [MNa+].
HRMS (ES+): m/z calcd
for C14H20N2NaO7 [MNa+]:
451.1163; found: 451.1163.
Selected Data for Compound 17
IR (KBr disc): νmax = 3427
(br, OH stretch), 1672 (s, C=O), 1639 (br, C=N)
cm-¹. ¹H NMR (500
MHz, D2O): δ = 1.93 [3 H,
s, N=C(CH3)], 3.39-3.41 (1
H, m, H-5), 3.65 (1 H, dd,
J
3,4 = 5.0
Hz, J
4,5 = 9.0 Hz,
H-4), 3.76 (1 H, app t, J = 4.7
Hz, H-3), 3.81-3.87 (2 H, m, H-6, H-6′), 3.95
(1 H, m, H-2), 5.98 (1 H, d, J
1,2 = 7.4
Hz, H-1). ¹³C NMR (125.8 MHz, D2O):
δ = 13.1 [q,
N=C(CH3)], 63.2 (dt, C-6), 66.4 (d,
C-2), 68.2 (d, C-4), 72.7 (dd, C-5), 80.0 (d, C-3), 101.2 (d, C-1),
165.7 (s, C=N). ³¹P NMR (203
MHz, D2O): δ = 5.54. MS: (ES-): m/z (%) = 282
(100) [M - H]-. HRMS
(ES-): m/z calcd
for C8H13NO8P [M - H]-:
282.0384; found: 282.0389.
Selected Data for 19
IR
(KBr disc): νmax = 3429 (br, OH stretch),
1641 (br, C=N) cm-¹. ¹H
NMR (500 MHz, D2O): δ = 2.07 [3
H, br s, N=C(CH3)], 3.42-3.45
(2 H, m, H-5a, H-5b), 3.63-3.68 (2 H, m, H-4b, H-6a), 3.72-3.83
(5 H, m, H-3b, H-4a, H-5c, H-6b, H-6′a), 3.86-3.96
(4 H, m, H-3c, H-4c, H-6c, H-6′b), 4.00-4.08 (2
H, m, H-2c, H-6′c), 4.11 (1 H, d, J = 2.7
Hz, H-2b), 4.18 (1 H, br d, J = 6.7
Hz, H-2a), 4.38 (1 H, s, H-3a), 4.76 (1 H, s, H-1b), 5.11 (1 H,
s, H-1c), 6.08 (1 H, d, J
1,2 = 7.3
Hz, H-1a). ¹³C NMR (125.8 MHz, D2O): δ = 13.0 [q, C=N(CH3)],
61.0 (t, C-6b), 61.5 (t, C-6a), 62.6 (dt, C-6c), 65.2 (d, C-2a),
66.0 (d, C-4c), 66.2 (d, C-4b), 69.3 (d, C-3a), 70.0 (d, C-3c),
70.1 (m, C-2b, C-2c), 70.9 (d, C-5a), 72.8 (dd, C-5c), 76.1 (d,
C-5b), 77.6 (d, C-4a), 80.3 (d, C-3b), 99.9 (d, C-1a), 101.1 (d,
C-1b), 102.5 (d, C-1c), 168.6 (s, C=N). ³¹P
NMR (162 MHz, D2O): δ = 5.71. MS (ES-):
m/z (%) = 606
(100) [M - 2Na + H]-.
HRMS (ES-): m/z calcd for
C20H33NO18P [M - 2Na + H]-:
606.1441; found: 606.1436.