References and Notes
<A NAME="RD02310ST-1A">1a</A>
Kagan HB.
Asymmetric
Synthesis
Vol. 5:
Academic Press;
New
York:
1985.
p.1-39
<A NAME="RD02310ST-1B">1b</A>
Brunner H.
Topics in Stereochemistry
Vol.
18:
Interscience;
New York:
1988.
p.129-247
<A NAME="RD02310ST-2A">2a</A>
Noyori R.
Ohkuma T.
Kitamura M.
Takaya H.
Sayo N.
Kumobayashi H.
Akutagawa S.
J. Am. Chem. Soc.
1987,
109:
5856
<A NAME="RD02310ST-2B">2b</A>
Corey EJ.
Bakshi RK.
Shibata S.
Chen C.-P.
Singh VK.
J. Am. Chem. Soc.
1987,
109:
7925
<A NAME="RD02310ST-3">3</A>
Bolm C.
Angew.
Chem., Int. Ed. Engl.
1991,
30:
542
<A NAME="RD02310ST-4A">4a</A>
Nishiyama H.
Sakaguchi H.
Nakamura T.
Horihata M.
Kondo M.
Itoh K.
Organometallics
1989,
8:
846
<A NAME="RD02310ST-4B">4b</A>
Nishiyama H.
Kondo M.
Nakamura T.
Itoh K.
Organometallics
1991,
10:
500
<A NAME="RD02310ST-4C">4c</A>
Nishiyama H.
Yamaguchi S.
Kondo M.
Itoh K.
J. Org. Chem.
1992,
57:
4306
<A NAME="RD02310ST-4D">4d</A>
Nishiyama H.
Park S.-B.
Itoh K.
Tetrahedron: Asymmetry
1992,
3:
1029
<A NAME="RD02310ST-4E">4e</A>
Nishiyama H.
Yamaguchi S.
Park S.-B.
Itoh K.
Tetrahedron: Asymmetry
1993,
4:
143
<A NAME="RD02310ST-5A">5a</A>
Peyronal JF.
Kagan HB.
Nouv. J. Chim.
1978,
2:
211
<A NAME="RD02310ST-5B">5b</A>
Ojima I.
Kogure T.
Kumagai M.
J.
Org. Chem.
1977,
42:
1671
<A NAME="RD02310ST-5C">5c</A>
Brunner H.
Obermann U.
Chem. Ber.
1989,
122:
499
<A NAME="RD02310ST-5D">5d</A>
Brunner H.
Brandl P.
Tetrahedron: Asymmetry
1991,
2:
919
<A NAME="RD02310ST-5E">5e</A>
Gladiali S.
Pinna L.
Delogu DG.
Graf E.
Brunner H.
Tetrahedron:
Asymmetry
1990,
1:
937
<A NAME="RD02310ST-6">6</A>
Jacobsen EN.
Zhang W.
Güler ML.
J.
Am. Chem. Soc.
1991,
113:
6703
<A NAME="RD02310ST-7A">7a</A>
Van Staveren CJ.
Aarts VMLJ.
Grootenhuis PDJ.
Droppers WJH.
Van Eerden J.
Harkema S.
Reinhoudt DN.
J.
Am. Chem. Soc.
1988,
110:
8134
<A NAME="RD02310ST-7B">7b</A>
Hong F.
Hollenback D.
Singer JW.
Klein P.
Bioorg. Med. Chem. Lett.
2005,
15:
4703
<A NAME="RD02310ST-8A">8a</A>
Belanger DB,
Siddiqui MA,
Curran PJ,
Hamman B,
Zhao L,
Reddy PAP,
Tadikonda PK,
Shipps GW, and
Mansoor UF. inventors; WO 082487 A2.
<A NAME="RD02310ST-8B">8b</A>
Oh-e T.
Miyaura N.
Suzuki A.
J.
Org. Chem.
1993,
58:
2201
<A NAME="RD02310ST-8C">8c</A>
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
<A NAME="RD02310ST-8D">8d</A>
Stanforth SP.
Tetrahedron
1998,
54:
263
<A NAME="RD02310ST-8E">8e</A>
Sutton AE.
Clardy J.
Tetrahedron
Lett.
2001,
42:
547
<A NAME="RD02310ST-8F">8f</A>
Hovinen J,
Mukkala VM,
Hakala H, and
Peu-Rahlati J. inventors; WO 058877 A1.
<A NAME="RD02310ST-9">9</A>
The overall yield of the ligand 5a is 45%. Similarly the overall
yields for ligands 5b,c,d,e,f are 39%, 40%, 38%, 33%,
and 28%, respectively.
<A NAME="RD02310ST-10">10</A>
All compounds were characterized based
on ¹H NMR and mass spectrometric analysis. Enantiomeric
excesses of alcohols were determined by chiral HPLC using either Chiracel
or Chiralpak OD-H columns.
<A NAME="RD02310ST-11">11</A>
4-(4-Ethylphenyl)-2,6-bis(4-isopropyl-4,5-dihydro-oxazol-2-yl)pyridine
(5d)White solid. [α]D
²² -44.7
(c 1.0, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 8.44 (s,
2 H), 7.72 (dd, J = 1.7,
6.5 Hz, 2 H), 7.33 (d, J = 8.2
Hz, 2 H), 4.57 (d, J = 8.3
Hz, 1 H), 4.55 (d, J = 8.3
Hz, 1 H), 4.28 (d, J = 8.4
Hz, 1 H), 4.24 (d, J = 8.3 Hz,
1 H), 4.15-4.21 (m, 2 H), 2.72 (q, J = 7.6
Hz, 2 H), 1.90 (q, J = 6.6
Hz, 2 H), 1.28 (t, J = 7.6
Hz, 3 H), 1.07 (d, J = 6.7 Hz,
6 H), 0.96 (d, J = 6.7
Hz, 6 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 162.5,
149.8, 147.4, 146.2, 134.0, 128.7, 127.2, 123.2, 72.9, 70.9, 32.9,
29.7, 28.6, 19.1, 18.3, 15.4 ppm. HRMS: m/z calcd for C25H31N3O2:
405.2416; found: 405.2437.
<A NAME="RD02310ST-12">12</A>
Compound 6dOrange
solid. ¹H NMR (400 MHz, CDCl3): δ = 8.12
(s, 2 H), 7.63 (d, J = 7.8
Hz, 2 H), 7.44 (d, J = 7.7
Hz, 2 H), 4.92-5.03 (m, 4 H), 4.69 (d, J = 7.3
Hz, 2 H), 3.09 (m, 2 H), 2.78 (q, J = 7.6
Hz, 2 H), 1.31 (t, J = 7.6
Hz, 3 H), 1.03 (d, J = 6.6 Hz,
6 H), 1.0 (d, J = 7.1
Hz, 6 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 166.2,
153.9, 148.8, 146.9, 132.2, 129.6, 127.5, 123.9, 73.2, 68.7, 29.7,
28.7, 28.4, 19.6, 15.2, 15.1 ppm.
<A NAME="RD02310ST-13">13</A>
Catalyst 6 was
activated by AgBF4 followed by treatment with Ph2SiH2 to
form an intermediate complex. The Rh-Si bond of the complex
preferably attacks the re face of the ketone
to obtain the S-alcohol
<A NAME="RD02310ST-14">14</A>
Typical Procedure
for the Asymmetric Hydrosilylation of Acetophenone 8: (
S
)-1-Phenylethanol 9A suspension
of the catalyst 6d (0.0333 mmol) and AgBF4 (0.0333
mmol) in THF (2 mL) was stirred at 10 ˚C for 1
h, and acetophenone 8 (0.3329 mmol) was
added to the reaction mixture at the same temperature. Diphenylsilane (0.5332
mmol) was added at 0 ˚C and the mixture allowed
to warm up to 10 ˚C and stirred for a further
20 h. The reaction was quenched with MeOH (2 mL) followed by the
addition of 1.5 M HCl (2 mL). The mixture was extracted with EtOAc (3 × 5
mL), and the combined organic layers were washed with H2O
(5 mL), brine (5 mL), dried over Na2SO4, filtered, and
concentrated. The crude product was purified by silica gel column
chromatography using 10% EtOAc in hexane to obtain 9 (92%). ¹H
NMR (400 MHz, CDCl3): δ = 7.28-7.40 (m,
5 H), 4.93 (q, J = 6.4
Hz, 1 H), 1.52 (d, J = 6.4
Hz, 3 H). The ee was determined by HPLC with Chiracel OD-H column,
5% EtOH-hexanes, 0.7 mL/min, 210-400
nm; t
R(major) = 11.7
(98.8%), t
R(minor) = 10.1
(1.1%), 98% ee.