RSS-Feed abonnieren
DOI: 10.1055/s-0029-1234071
© Georg Thieme Verlag KG Stuttgart · New York
Effect of RU486 on Hepatic and Adipocyte Gene Expression Improves Diabetes Control in Obesity-type 2 Diabetes
Publikationsverlauf
received 09.04.2009
accepted 07.07.2009
Publikationsdatum:
10. August 2009 (online)

Abstract
Cortisol has wide-ranging actions, namely in gluconeogenesis and glycogenesis and exerts its effects through the glucocorticoid receptor. In the present study, we examined effects of glucocorticoid receptor blockade on type 2 diabetes control using the antagonist, RU486. Obese diabetic mice received daily injections of vehicle or RU486 over 28 days. Food intake, body weight, and plasma glucose were measured frequently. At 28 days, glucose tolerance, insulin sensitivity, and plasma triglycerides were assessed. Epididymal white adipose tissue and liver were excised for measurement of gene expression. Daily administration of RU486 had no effect on body weight or food intake, but plasma glucose concentrations were significantly lowered (1.4–1.6-fold; p<0.05 to p<0.001). Glucose concentrations were also significantly reduced (2.2-fold; p<0.001) following a glucose challenge. Similarly, exogenous insulin evoked a significantly greater reduction in plasma glucose (3.6-fold; p<0.01). Gene expression analysis revealed a significant reduction in hepatic mRNA of key enzymes, namely PEPCK-C (25%; p<0.01) and G6 Pase (32%; p<0.01) and also 11β-HSD1 (18%; p<0.05). Investigation of adipose tissue gene expression also demonstrated reduced expression in 11β-HSD1 (47%; p<0.05) and LPL (47%; p<0.001). These data demonstrate wide-ranging effects of glucocorticoid receptor antagonism on gene expression and metabolism, illustrating the therapeutic potential of specific glucocorticoid receptor antagonists in obesity-related diabetes.
Key words
diabetes - glucocorticoid receptor - glucose tolerance - insulin sensitivity - ob/ob mice - RU486
References
- 1
Schoneveld OJ, Gaemers IC, Lamers WH.
Mechanisms of glucocorticoid signalling.
Biochem Biophys Acta.
2004;
1680
114-128
MissingFormLabel
- 2
Kassel O, Herrlich P.
Crosstalk between the glucocorticoid receptor and other transcription factors: Molecular
aspects.
Mol Cell Endocrinol.
2007;
275
13-29
MissingFormLabel
- 3
Kino T.
Tissue Glucocorticoid sensitivity: Beyond stochastic regulation on the diverse actions
of glucocorticoids.
Horm Metab Res.
2007;
39
420-424
MissingFormLabel
- 4
Friedman JE, Yun JS, Patel YM, McGrane MM, Hanson RW.
Glucocortocoids regulate the induction of phosphoenolpyruvate carboxykinase (GTP)
gene transcription during diabetes.
J Biol Chem.
1993;
268
12952-12957
MissingFormLabel
- 5
Pilkis SJ, Granner DK.
Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis.
Annu Rev Physiol.
1992;
54
885-909
MissingFormLabel
- 6
McKay LI, Cidlowski JA.
Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa
B and steroid receptor-signalling pathways.
Endocrinol Rev.
1999;
20
435-459
MissingFormLabel
- 7
Herbert J, Goodyer IM, Grossman AB, Hastings MH, de Kloet ER, Lightman SL, Lupien SJ, Roozendaal B, Seckl JR.
Do corticosteroids damage the brain?.
J Neuroendocrinol.
2006;
18
393-411
MissingFormLabel
- 8
Sivagurunathan S, Muir MM, Brennan TC, Seale JP, Mason RS.
Influence of glucocorticoids on human osteoclast generation and activity.
J Bone Miner Res.
2005;
20
390-398
MissingFormLabel
- 9
Matero F, Boscaro M.
Glucocorticoid-dependent hypertension.
J Steroid Biochem Mol Biol.
1992;
43
409-413
MissingFormLabel
- 10
Pasquali R, Vicennati V.
The abdominal obesity phenotype and insulin resistance are associated with abnormalities
of the hypothalamic-pituitary adrenal axis in humans.
Horm Metab Res.
2000;
32
521-525
MissingFormLabel
- 11
Mahajan DK, London SN.
Mifepristone (RU486): A review.
Fertil Steril.
1997;
68
967-976
MissingFormLabel
- 12
Johanssen S, Allolio B.
Mifepristone (RU486) in Cushing's Syndrome.
Eur J Endocrinol.
2007;
157
561-569
MissingFormLabel
- 13
Cadepond F, Ulmann A, Baulieu EE.
RU486 (Mifepristone): Mechanism of action and clinical uses.
Annu Rev Med.
1997;
48
129-156
MissingFormLabel
- 14
Jay MA, Ren J.
Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2
diabetes mellitus.
Curr Diabetes Rev.
2007;
3
33-39
MissingFormLabel
- 15
Livingstone DE, Walker BR.
Is 11beta-hydroxysteroid dehydrogenase type 1 a therapeutic target? Effects of carbenoxolone
in lean and obese Zucker rats.
J Pharmacol Exp Therap.
2003;
305
167-172
MissingFormLabel
- 16
Kim W, Egan JM.
The role of incretins in glucose homeostasis and diabetes treatment.
Pharmacol Rev.
2008;
60
470-512
MissingFormLabel
- 17 Bailey CJ, Flatt PR. Animal syndromes resembling type 2 diabetes. In: Pickup JC, Williams G (eds)
Textbook of Diabetes (3rd ed) . Oxford: Blackwell Science Ltd. 2003: 25.1-25.30MissingFormLabel - 18
Bailey CJ, Flatt PR, Atkins TW.
Influence of genetic background and age on the expression of the obese hyperglycaemic
syndrome in Aston ob/ob mice.
Int J Obesity.
1982;
6
11-21
MissingFormLabel
- 19
Gettys TW, Watson PM, Taylor IL, Collins S.
RU-486 (Mifepristone) ameliorates diabetes but does not correct deficient β-adrenergic
signalling in adipocytes from mature C57BL/J6-ob/ob mice.
Int J Obesity.
1997;
21
865-873
MissingFormLabel
- 20
Flatt PR, Bailey CJ.
Abnormal plasma glucose and insulin responses in heterozygous lean (ob/+) mice.
Diabetologia.
1981;
20
573-577
MissingFormLabel
- 21
McClean PL, Irwin N, Cassidy RS, Holst JJ, Gault VA, Flatt PR.
GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic
disturbances induced in mice by prolonged consumption of high-fat diet.
Am J Physiol Endocrinol Metab.
2007;
293
1746-1755
MissingFormLabel
- 22
Saltiel AR, Kahn R.
Insulin signalling and the regulation of glucose and lipid metabolism.
Nature.
2001;
414
799-806
MissingFormLabel
- 23
Dirlewanger M, Schneiter PH, Paquot N, Jequier E, Rey V, Tappy L.
Effects of glucocorticoids on hepatic sensitivity to insulin and glucagon in man.
Clin Nutr.
2000;
19
29-34
MissingFormLabel
- 24
Rognstad R.
Rate-limiting steps in metabolic pathways.
J Biol Chem.
1979;
254
1875-1878
MissingFormLabel
- 25
Imai E, Stromstedt PE, Quinn PG, Carlstedt-Duke J, Gustafsson JA, Granner DK.
Characterization of a complex glucocorticoid response unit in the phosphoenolpyruvate
carboxykinase gene.
Mol Cell Biol.
1990;
10
4172-4179
MissingFormLabel
- 26
Vander Kooi BT, Onuma H, Oeser JK, Svitek CA, Allen SR, Vander Kooi CW, Chazin WJ, O’Brien RM.
The Glucose-6-Phosphatase catalytic subunit gene promoter contains both positive and
negative glucocorticoid response elements.
Mol Endocrinol.
2005;
19
3001-3022
MissingFormLabel
- 27
Liu Y, Nakagawa Y, Wang Y, Sakurai R, Tripathi PV, Lufty K, Friedman TC.
Increased glucocorticoid receptor and 11{beta}-hydroxysteroid dehydrogenase type 1
expression in hepatocytes may contribute to the phenotype of type 2 diabetes in db/db
mice.
Diabetes.
2005;
54
32-40
MissingFormLabel
- 28
Friedman JE, Sun Y, Ishizuka T, Farrell CJ, McCormack SE, Herron LM, Hakimi P, Lechner P, Yun JS.
Phosphoenolpyruvate carboxykinase (GTP) gene transcription and hyperglycemia are regulated
by glucocorticoids in genetically obese db/db transgenic mice.
J Biol Chem.
1997;
272
31475-31481
MissingFormLabel
- 29
Gómez-Valadés AG, Méndez-Lucas A, Vidal-Alabró A, Blasco FX, Chillon M, Bartrons R, Bermúdez J, Perales JC.
Pck1 gene silencing in the liver improves glycemia control, insulin sensitivity, and
dyslipidemia in db/db mice.
Diabetes.
2008;
57
2199-2210
MissingFormLabel
- 30
Liu Y, Nakagawa Y, Wang Y, Liu L, Du H, Wang W, Ren X, Lufty K, Friedman TC.
Reduction of hepatic glucocorticoid receptor and hexose-6-phosphate dehydrogenase
expression ameliorates diet-induced obesity and insulin resistance in mice.
J Mol Endocrinol.
2008;
41
53-64
MissingFormLabel
- 31
Jiang W, Fiordeliso JJ, Allan G, Linton O, Tannenbaum P, Xu J, Zhu P, Gunnet J, Demarest K, Lundeen S, Sui Z.
Discovery of novel phosphorus-containing steroids as selective glucocorticoid receptor
antagonist.
Bioorg Med Chem Lett.
2007;
17
1471-1474
MissingFormLabel
- 32
Alberts P, Nilsson C, Selen G, Engblom LO, Edling NH, Norling S, Klingström G, Larsson C, Forsgren M, Ashkzari M, Nilsson CE, Fiedler M, Bergqvist E, Ohmen B, Bjorkstrand E, Abrahmsen LB.
Selective inhibition of 11 beta-hydroxysteroid dehydrogenase type 1 improves hepatic
insulin sensitivity in hyperglycemic mice strains.
Endocrinology.
2003;
144
4755-4762
MissingFormLabel
- 33
Picard F, Wanatabe M, Schoonjans K, Lydon J, O’Malley BW, Auwerx J.
Progesterone receptor knockout mice have an improved glucose homeostasis secondary
to β-cell proliferation.
Proc Natl Acad Sci USA.
2002;
99
15644-15648
MissingFormLabel
- 34
Langley SC, York, DA.
Effects of antiglucocorticoid RU 486 on development of obesity in obese fa/fa Zucker
rats.
Am J Physiol.
1990;
259
539-544
MissingFormLabel
- 35
Fried SK, Russell CD, Grauso NL, Brolin RE.
Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental
adipose tissues of obese women and men.
J Clin Invest.
1993;
92
2191-2198
MissingFormLabel
- 36
Ong JM, Simsolo RB, Saffari B, Kern PA.
The regulation of lipoprotein lipase gene expression by dexamethasone in isolated
rat adipocytes.
Endocrinology.
1992;
130
2310-2316
MissingFormLabel
- 37
Ottosson M, Mårin P, Karason K, Elander A, Björntorp P.
Blockade of the glucocorticoid receptor with RU 486: effects in vitro and in vivo
on human adipose tissue lipoprotein lipase activity.
J Clin Endocrinol Metab.
1995;
78
375-380
MissingFormLabel
- 38
Bailey CJ, Day C, Bray GA, Lipson LG, Flatt PR.
Role of adrenal glands in the development of abnormal glucose and insulin homeostasis
in genetically obese (ob/ob) mice.
Horm Metab Res.
1986;
18
357-360
MissingFormLabel
Correspondence
V. A. Gault
The SAAD Centre for Pharmacy and Diabetes
School of Biomedical Sciences
University of Ulster
Coleraine BT52 1SA
Northern Ireland
UK
Telefon: +28/7032 33 22
Fax: +28/7032 49 65
eMail: va.gault@ulster.ac.uk