ABSTRACT
In this review we discuss the association of overall hypofibrinolysis and individual
fibrinolytic protein levels with venous and arterial thrombosis. Decreased overall
fibrinolytic potential and high plasma levels of thrombin-activatable fibrinolysis
inhibitor have been consistently associated with risk of venous thrombosis, whereas
little evidence exists for a role of plasminogen, α2-antiplasmin, tissue plasminogen
activator, and plasminogen activator inhibitor 1. Overall fibrinolytic potential has
been associated with arterial thrombosis in young individuals, but studies on the
individual components gave conflicting results. These inconsistent results could be
a consequence of nonfibrinolytic properties of fibrinolytic proteins, including roles
in inflammation, vascular remodeling, atherosclerosis, and the metabolic syndrome.
The nonfibrinolytic properties of these proteins may have opposing effects on development
of arterial disease as compared with the lytic properties, which may explain opposite
results in different studies with slightly different population characteristics. These
properties may be more relevant in arterial than in venous thrombosis.
KEYWORDS
Fibrinolysis - arterial thrombosis - venous thrombosis
REFERENCES
- 1
Rosendaal F R.
Clotting and myocardial infarction: a cycle of insights.
J Thromb Haemost.
2003;
1(4)
640-642
- 2
Lisman T, de Groot P G, Meijers J CM, Rosendaal F R.
Reduced plasma fibrinolytic potential is a risk factor for venous thrombosis.
Blood.
2005;
105(3)
1102-1105
- 3
Meltzer M E, Doggen C JM, de Groot P G, Rosendaal F R, Lisman T.
Reduced plasma fibrinolytic capacity as a potential risk factor for a first myocardial
infarction in young men.
Br J Haematol.
2009;
145(1)
121-127
- 4
Meltzer M E, Lisman T, Doggen C JM, de Groot P G, Rosendaal F R.
Synergistic effects of hypofibrinolysis and genetic and acquired risk factors on the
risk of a first venous thrombosis.
PLoS Med.
2008;
5(5)
e97
- 5
Lijnen H R.
Plasmin and matrix metalloproteinases in vascular remodeling.
Thromb Haemost.
2001;
86(1)
324-333
- 6
Kooistra T, Schrauwen Y, Arts J, Emeis J J.
Regulation of endothelial cell t-PA synthesis and release.
Int J Hematol.
1994;
59(4)
233-255
- 7
Hoylaerts M, Rijken D C, Lijnen H R, Collen D.
Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role
of fibrin.
J Biol Chem.
1982;
257(6)
2912-2919
- 8
Chmielewska J, Rånby M, Wiman B.
Kinetics of the inhibition of plasminogen activators by the plasminogen-activator
inhibitor. Evidence for ‘second-site’ interactions.
Biochem J.
1988;
251(2)
327-332
- 9
Chmielewska J, Rånby M, Wiman B.
Evidence for a rapid inhibitor to tissue plasminogen activator in plasma.
Thromb Res.
1983;
31
427-436
- 10
Rijken D C, Lijnen H R.
New insights into the molecular mechanisms of the fibrinolytic system.
J Thromb Haemost.
2009;
7(1)
4-13
- 11
Collen D.
Identification and some properties of a new fast-reacting plasmin inhibitor in human
plasma.
Eur J Biochem.
1976;
69(1)
209-216
- 12
Rákóczi I, Wiman B, Collen D.
On the biological significance of the specific interaction between fibrin, plasminogen
and antiplasmin.
Biochim Biophys Acta.
1978;
540(2)
295-300
- 13
Sakata Y, Aoki N.
Significance of cross-linking of alpha 2-plasmin inhibitor to fibrin in inhibition
of fibrinolysis and in hemostasis.
J Clin Invest.
1982;
69(3)
536-542
- 14
Mosnier L O, Bouma B N.
Regulation of fibrinolysis by thrombin activatable fibrinolysis inhibitor, an unstable
carboxypeptidase B that unites the pathways of coagulation and fibrinolysis.
Arterioscler Thromb Vasc Biol.
2006;
26(11)
2445-2453
- 15
Prins M H, Hirsh J.
A critical review of the evidence supporting a relationship between impaired fibrinolytic
activity and venous thromboembolism.
Arch Intern Med.
1991;
151(9)
1721-1731
- 16
Lisman T, Leebeek F WG, Mosnier L O et al..
Thrombin-activatable fibrinolysis inhibitor deficiency in cirrhosis is not associated
with increased plasma fibrinolysis.
Gastroenterology.
2001;
121(1)
131-139
- 17
Guimaräes A H, de Bruijne E L, Lisman T et al..
Hypofibrinolysis as risk factor for arterial thrombosis at young age.
Br J Haematol.
2009;
145(1)
115-120
- 18
Meade T W, Ruddock V, Stirling Y, Chakrabarti R, Miller G J.
Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart
disease in the Northwick Park Heart Study.
Lancet.
1993;
342(8879)
1076-1079
- 19
Meade T W, Cooper J A, Chakrabarti R, Miller G J, Stirling Y, Howarth D J.
Fibrinolytic activity and clotting factors in ischaemic heart disease in women.
BMJ.
1996;
312(7046)
1581
- 20
Zorio E, Castelló R, Falcó C et al..
Thrombin-activatable fibrinolysis inhibitor in young patients with myocardial infarction
and its relationship with the fibrinolytic function and the protein C system.
Br J Haematol.
2003;
122(6)
958-965
- 21
Juhan-Vague I, Pyke S D, Alessi M C, Jespersen J, Haverkate F, Thompson S G.
Fibrinolytic factors and the risk of myocardial infarction or sudden death in patients
with angina pectoris. ECAT Study Group. European Concerted Action on Thrombosis and
Disabilities.
Circulation.
1996;
94(9)
2057-2063
- 22
Cortellaro M, Cofrancesco E, Boschetti C The PLAT Group et al.
Increased fibrin turnover and high PAI-1 activity as predictors of ischemic events
in atherosclerotic patients. A case-control study.
Arterioscler Thromb.
1993;
13(10)
1412-1417
- 23
Doggen C JM, Rosendaal F R, Meijers J CM.
Levels of intrinsic coagulation factors and the risk of myocardial infarction among
men: opposite and synergistic effects of factors XI and XII.
Blood.
2006;
108(13)
4045-4051
- 24
Segev A, Ellis M H, Segev F et al..
High prevalence of thrombophilia among young patients with myocardial infarction and
few conventional risk factors.
Int J Cardiol.
2005;
98(3)
421-424
- 25
Mignatti P, Robbins E, Rifkin D B.
Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade.
Cell.
1986;
47(4)
487-498
- 26
Lijnen H R.
Matrix metalloproteinases and cellular fibrinolytic activity.
Biochemistry (Mosc).
2002;
67(1)
92-98
- 27
Shah P K, Galis Z S.
Matrix metalloproteinase hypothesis of plaque rupture: players keep piling up but
questions remain.
Circulation.
2001;
104(16)
1878-1880
- 28
Carmeliet P, Moons L, Ploplis V, Plow E, Collen D.
Impaired arterial neointima formation in mice with disruption of the plasminogen gene.
J Clin Invest.
1997;
99(2)
200-208
- 29
Xiao Q, Danton M J, Witte D P et al..
Plasminogen deficiency accelerates vessel wall disease in mice predisposed to atherosclerosis.
Proc Natl Acad Sci U S A.
1997;
94(19)
10335-10340
- 30
Matsushima K, Taguchi M, Kovacs E J, Young H A, Oppenheim J J.
Intracellular localization of human monocyte associated interleukin 1 (IL 1) activity
and release of biologically active IL 1 from monocytes by trypsin and plasmin.
J Immunol.
1986;
136(8)
2883-2891
- 31
Lyons R M, Gentry L E, Purchio A F, Moses H L.
Mechanism of activation of latent recombinant transforming growth factor beta 1 by
plasmin.
J Cell Biol.
1990;
110(4)
1361-1367
- 32
Degen J L, Bugge T H, Goguen J D.
Fibrin and fibrinolysis in infection and host defense.
J Thromb Haemost.
2007;
5(Suppl 1)
24-31
- 33
Epstein S E.
The multiple mechanisms by which infection may contribute to atherosclerosis development
and course.
Circ Res.
2002;
90(1)
2-4
- 34
Favier R, Aoki N, de Moerloose P.
Congenital alpha(2)-plasmin inhibitor deficiencies: a review.
Br J Haematol.
2001;
114(1)
4-10
- 35
Brandt J T.
Plasminogen and tissue-type plasminogen activator deficiency as risk factors for thromboembolic
disease.
Arch Pathol Lab Med.
2002;
126(11)
1376-1381
- 36
Okamoto A, Sakata T, Mannami T et al..
Population-based distribution of plasminogen activity and estimated prevalence and
relevance to thrombotic diseases of plasminogen deficiency in the Japanese: the Suita
Study.
J Thromb Haemost.
2003;
1(11)
2397-2403
- 37
Hamsten A, Blombäck M, Wiman B et al..
Haemostatic function in myocardial infarction.
Br Heart J.
1986;
55(1)
58-66
- 38
Folsom A R, Aleksic N, Park E, Salomaa V, Juneja H, Wu K K.
Prospective study of fibrinolytic factors and incident coronary heart disease: the
Atherosclerosis Risk in Communities (ARIC) Study.
Arterioscler Thromb Vasc Biol.
2001;
21(4)
611-617
- 39
Jenkins G R, Seiffert D, Parmer R J, Miles L A.
Regulation of plasminogen gene expression by interleukin-6.
Blood.
1997;
89(7)
2394-2403
- 40
Alessi M C, Poggi M, Juhan-Vague I.
Plasminogen activator inhibitor-1, adipose tissue and insulin resistance.
Curr Opin Lipidol.
2007;
18(3)
240-245
- 41
Samad F, Pandey M, Bell P A, Loskutoff D J.
Insulin continues to induce plasminogen activator inhibitor 1 gene expression in insulin-resistant
mice and adipocytes.
Mol Med.
2000;
6(8)
680-692
- 42
Peraldi P, Spiegelman B M.
Studies of the mechanism of inhibition of insulin signaling by tumor necrosis factor-alpha.
J Endocrinol.
1997;
155(2)
219-220
- 43
Samad F, Yamamoto K, Loskutoff D J.
Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose
tissue in vivo. Induction by tumor necrosis factor-alpha and lipopolysaccharide.
J Clin Invest.
1996;
97(1)
37-46
- 44
Sakamoto T, Woodcock-Mitchell J, Marutsuka K, Mitchell J J, Sobel B E, Fujii S.
TNF-alpha and insulin, alone and synergistically, induce plasminogen activator inhibitor-1
expression in adipocytes.
Am J Physiol.
1999;
276(6 Pt 1)
C1391-C1397
- 45
Festa A, D’Agostino Jr R, Tracy R P, Haffner S M. Insulin Resistance Atherosclerosis
Study .
Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict
the development of type 2 diabetes: the insulin resistance atherosclerosis study.
Diabetes.
2002;
51(4)
1131-1137
- 46
Morange P E, Alessi M C, Verdier M, Casanova D, Magalon G, Juhan-Vague I.
PAI-1 produced ex vivo by human adipose tissue is relevant to PAI-1 blood level.
Arterioscler Thromb Vasc Biol.
1999;
19(5)
1361-1365
- 47
De Taeye B M, Novitskaya T, Gleaves L, Covington J W, Vaughan D E.
Bone marrow plasminogen activator inhibitor-1 influences the development of obesity.
J Biol Chem.
2006;
281(43)
32796-32805
- 48
Schäfer K, Fujisawa K, Konstantinides S, Loskutoff D J.
Disruption of the plasminogen activator inhibitor 1 gene reduces the adiposity and
improves the metabolic profile of genetically obese and diabetic ob/ob mice.
FASEB J.
2001;
15(10)
1840-1842
- 49
Skurk T, Lee Y M, Hauner H.
Angiotensin II and its metabolites stimulate PAI-1 protein release from human adipocytes
in primary culture.
Hypertension.
2001;
37(5)
1336-1340
- 50
Birgel M, Gottschling-Zeller H, Röhrig K, Hauner H.
Role of cytokines in the regulation of plasminogen activator inhibitor-1 expression
and secretion in newly differentiated subcutaneous human adipocytes.
Arterioscler Thromb Vasc Biol.
2000;
20(6)
1682-1687
- 51
Felmeden D C, Lip G Y.
The renin-angiotensin-aldosterone system and fibrinolysis.
J Renin Angiotensin Aldosterone Syst.
2000;
1(3)
240-244
- 52
Schneiderman J, Sawdey M S, Keeton M R et al..
Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic
human arteries.
Proc Natl Acad Sci U S A.
1992;
89(15)
6998-7002
- 53
Lupu F, Bergonzelli G E, Heim D A et al..
Localization and production of plasminogen activator inhibitor-1 in human healthy
and atherosclerotic arteries.
Arterioscler Thromb.
1993;
13(7)
1090-1100
- 54
Sjöland H, Eitzman D T, Gordon D, Westrick R, Nabel E G, Ginsburg D.
Atherosclerosis progression in LDL receptor-deficient and apolipoprotein E-deficient
mice is independent of genetic alterations in plasminogen activator inhibitor-1.
Arterioscler Thromb Vasc Biol.
2000;
20(3)
846-852
- 55
Eitzman D T, Westrick R J, Xu Z, Tyson J, Ginsburg D.
Plasminogen activator inhibitor-1 deficiency protects against atherosclerosis progression
in the mouse carotid artery.
Blood.
2000;
96(13)
4212-4215
- 56
Luttun A, Lupu F, Storkebaum E et al..
Lack of plasminogen activator inhibitor-1 promotes growth and abnormal matrix remodeling
of advanced atherosclerotic plaques in apolipoprotein E-deficient mice.
Arterioscler Thromb Vasc Biol.
2002;
22(3)
499-505
- 57
Kienast J, Padró T, Steins M et al..
Relation of urokinase-type plasminogen activator expression to presence and severity
of atherosclerotic lesions in human coronary arteries.
Thromb Haemost.
1998;
79(3)
579-586
- 58
Degryse B, Sier C F, Resnati M, Conese M, Blasi F.
PAI-1 inhibits urokinase-induced chemotaxis by internalizing the urokinase receptor.
FEBS Lett.
2001;
505(2)
249-254
- 59
Meltzer M E, Doggen C JM, de Groot P G, Rosendaal F R, Lisman T.
Fibrinolysis and the risk of venous and arterial thrombosis.
Curr Opin Hematol.
2007;
14(3)
242-248
- 60
Grimaudo V, Hauert J, Bachmann F, Kruithof E K.
Diurnal variation of the fibrinolytic system.
Thromb Haemost.
1988;
59(3)
495-499
- 61
Mannucci P M, Bernardinelli L, Foco L et al..
Tissue plasminogen activator antigen is strongly associated with myocardial infarction
in young women.
J Thromb Haemost.
2005;
3(2)
280-286
- 62
Thögersen A M, Jansson J H, Boman K et al..
High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma
precede a first acute myocardial infarction in both men and women: evidence for the
fibrinolytic system as an independent primary risk factor.
Circulation.
1998;
98(21)
2241-2247
- 63
Scarabin P Y, Aillaud M F, Amouyel P Prospective Epidemiological Study of Myocardial
Infarction et al.
Associations of fibrinogen, factor VII and PAI-1 with baseline findings among 10,500
male participants in a prospective study of myocardial infarction—the PRIME Study.
Thromb Haemost.
1998;
80(5)
749-756
- 64
Lundblad D, Dinesen B, Rautio A, Røder M E, Eliasson M.
Low level of tissue plasminogen activator activity in non-diabetic patients with a
first myocardial infarction.
J Intern Med.
2005;
258(1)
13-20
- 65
Smith A, Patterson C, Yarnell J, Rumley A, Ben-Shlomo Y, Lowe G.
Which hemostatic markers add to the predictive value of conventional risk factors
for coronary heart disease and ischemic stroke? The Caerphilly Study.
Circulation.
2005;
112(20)
3080-3087
- 66
Verheugt F W, ten Cate J W, Sturk A et al..
Tissue plasminogen activator activity and inhibition in acute myocardial infarction
and angiographically normal coronary arteries.
Am J Cardiol.
1987;
59(12)
1075-1079
- 67
Båvenholm P, de Faire U, Landou C et al..
Progression of coronary artery disease in young male post-infarction patients is linked
to disturbances of carbohydrate and lipoprotein metabolism and to impaired fibrinolytic
function.
Eur Heart J.
1998;
19(3)
402-410
- 68
Juhan-Vague I, Morange P E, Frere C HIFMECH Study Group et al.
The plasminogen activator inhibitor-1 -675 4G/5G genotype influences the risk of myocardial
infarction associated with elevated plasma proinsulin and insulin concentrations in
men from Europe: the HIFMECH study.
J Thromb Haemost.
2003;
1(11)
2322-2329
- 69
Munkvad S, Gram J, Jespersen J.
A depression of active tissue plasminogen activator in plasma characterizes patients
with unstable angina pectoris who develop myocardial infarction.
Eur Heart J.
1990;
11(6)
525-528
- 70
Robinson S D, Ludlam C A, Boon N A, Newby D E.
Endothelial fibrinolytic capacity predicts future adverse cardiovascular events in
patients with coronary heart disease.
Arterioscler Thromb Vasc Biol.
2007;
27(7)
1651-1656
- 71
Jansson J H, Nilsson T K, Olofsson B O.
Tissue plasminogen activator and other risk factors as predictors of cardiovascular
events in patients with severe angina pectoris.
Eur Heart J.
1991;
12(2)
157-161
- 72
Cushman M, Lemaitre R N, Kuller L H et al..
Fibrinolytic activation markers predict myocardial infarction in the elderly. The
Cardiovascular Health Study.
Arterioscler Thromb Vasc Biol.
1999;
19(3)
493-498
- 73
Itakura H, Sobel B E, Boothroyd D Atherosclerotic Disease, Vascular Function and Genetic
Epidemiology Advance (ADVANCE) Study et al.
Do plasma biomarkers of coagulation and fibrinolysis differ between patients who have
experienced an acute myocardial infarction versus stable exertional angina?.
Am Heart J.
2007;
154(6)
1059-1064
- 74
Ridker P M, Vaughan D E, Stampfer M J et al..
Baseline fibrinolytic state and the risk of future venous thrombosis. A prospective
study of endogenous tissue-type plasminogen activator and plasminogen activator inhibitor.
Circulation.
1992;
85(5)
1822-1827
- 75
Ladenvall P, Johansson L, Jansson J H et al..
Tissue-type plasminogen activator -7,351C/T enhancer polymorphism is associated with
a first myocardial infarction.
Thromb Haemost.
2002;
87(1)
105-109
- 76
Tzoulaki I, Murray G D, Lee A J, Rumley A, Lowe G D, Fowkes F G.
Relative value of inflammatory, hemostatic, and rheological factors for incident myocardial
infarction and stroke: the Edinburgh Artery Study.
Circulation.
2007;
115(16)
2119-2127
- 77
van der Bom J G, de Knijff P, Haverkate F et al..
Tissue plasminogen activator and risk of myocardial infarction. The Rotterdam Study.
Circulation.
1997;
95(12)
2623-2627
- 78
Lowe G D, Danesh J, Lewington S et al..
Tissue plasminogen activator antigen and coronary heart disease. Prospective study
and meta-analysis.
Eur Heart J.
2004;
25(3)
252-259
- 79
Gram J, Bladbjerg E M, Møller L, Sjøl A, Jespersen J.
Tissue-type plasminogen activator and C-reactive protein in acute coronary heart disease.
A nested case-control study.
J Intern Med.
2000;
247(2)
205-212
- 80
Pineda J, Marin F, Marco P et al..
Premature coronary artery disease in young (age <45) subjects: Interactions of lipid
profile, thrombophilic and haemostatic markers.
Int J Cardiol.
2008 July 12;
, (Epub ahead of print)
- 81
MacCallum P K, Cooper J A, Howarth D J, Meade T W, Miller G J.
Sex differences in the determinants of fibrinolytic activity.
Thromb Haemost.
1998;
79(3)
587-590
- 82
Crowther M A, Roberts J, Roberts R et al..
Fibrinolytic variables in patients with recurrent venous thrombosis: a prospective
cohort study.
Thromb Haemost.
2001;
85(3)
390-394
- 83
Bajzar L, Manuel R, Nesheim M E.
Purification and characterization of TAFI, a thrombin-activatable fibrinolysis inhibitor.
J Biol Chem.
1995;
270(24)
14477-14484
- 84
Boffa M B, Koschinsky M L.
Curiouser and curiouser: recent advances in measurement of thrombin-activatable fibrinolysis
inhibitor (TAFI) and in understanding its molecular genetics, gene regulation, and
biological roles.
Clin Biochem.
2007;
40(7)
431-442
- 85
Campbell W D, Lazoura E, Okada N, Okada H.
Inactivation of C3a and C5a octapeptides by carboxypeptidase R and carboxypeptidase
N.
Microbiol Immunol.
2002;
46(2)
131-134
- 86
Myles T, Nishimura T, Yun T H et al..
Thrombin activatable fibrinolysis inhibitor, a potential regulator of vascular inflammation.
J Biol Chem.
2003;
278(51)
51059-51067
- 87
Swaisgood C M, Schmitt D, Eaton D, Plow E F.
In vivo regulation of plasminogen function by plasma carboxypeptidase B.
J Clin Invest.
2002;
110(9)
1275-1282
- 88
Asai S, Sato T, Tada T et al..
Absence of procarboxypeptidase R induces complement-mediated lethal inflammation in
lipopolysaccharide-primed mice.
J Immunol.
2004;
173(7)
4669-4674
- 89
Sato T, Miwa T, Akatsu H et al..
Pro-carboxypeptidase R is an acute phase protein in the mouse, whereas carboxypeptidase
N is not.
J Immunol.
2000;
165(2)
1053-1058
- 90
te Velde E A, Wagenaar G T, Reijerkerk A et al..
Impaired healing of cutaneous wounds and colonic anastomoses in mice lacking thrombin-activatable
fibrinolysis inhibitor.
J Thromb Haemost.
2003;
1(10)
2087-2096
- 91
van Tilburg N H, Rosendaal F R, Bertina R M.
Thrombin activatable fibrinolysis inhibitor and the risk for deep vein thrombosis.
Blood.
2000;
95(9)
2855-2859
- 92
Eichinger S, Schönauer V, Weltermann A et al..
Thrombin-activatable fibrinolysis inhibitor and the risk for recurrent venous thromboembolism.
Blood.
2004;
103(10)
3773-3776
- 93
Libourel E J, Bank I, Meinardi J R et al..
Co-segregation of thrombophilic disorders in factor V Leiden carriers; the contributions
of factor VIII, factor XI, thrombin activatable fibrinolysis inhibitor and lipoprotein(a)
to the absolute risk of venous thromboembolism.
Haematologica.
2002;
87(10)
1068-1073
- 94
Silveira A, Schatteman K, Goossens F et al..
Plasma procarboxypeptidase U in men with symptomatic coronary artery disease.
Thromb Haemost.
2000;
84(3)
364-368
- 95
Santamaría A, Martínez-Rubio A, Borrell M, Mateo J, Ortín R, Fontcuberta J.
Risk of acute coronary artery disease associated with functional thrombin activatable
fibrinolysis inhibitor plasma level.
Haematologica.
2004;
89(7)
880-881
- 96
Schroeder V, Wilmer M, Buehler B, Kohler H P.
TAFI activity in coronary artery disease: a contribution to the current discussion
on TAFI assays.
Thromb Haemost.
2006;
96(2)
236-237
- 97
Morange P E, Tregouet D A, Frere C The Prime Study Group et al.
TAFI gene haplotypes, TAFI plasma levels and future risk of coronary heart disease:
the PRIME Study.
J Thromb Haemost.
2005;
3(7)
1503-1510
- 98
Meltzer M E, Doggen C J, de Groot P G, Meijers J C, Rosendaal F R, Lisman T.
Low thrombin activatable fibrinolysis inhibitor activity levels are associated with
an increased risk of a first myocardial infarction in men.
Haematologica.
2009;
94(6)
811-818
Ton LismanPh.D.
Surgical Research Laboratory, Department of Surgery, University Medical Center Groningen
University of Groningen, the Netherlands
eMail: J.A.Lisman@chir.umcg.nl