Subscribe to RSS
DOI: 10.1055/s-0029-1245884
© Georg Thieme Verlag KG Stuttgart · New York
Ex-Vivo Human Lung Tumor Model: Use for Temperature Measurements during Thermal Ablation of NSCLC
Humanes Ex-vivo-Lungentumormodell: Nutzung für Temperaturmessungen während der Thermoablation von NSCLCPublication History
received: 25.11.2009
accepted: 16.10.2010
Publication Date:
17 December 2010 (online)

Zusammenfassung
Ziel: In dieser Studie wurde ein menschliches Ex-vivo-Lungenkrebsmodell verwendet, um die Temperaturentwicklung bei der Ablation mit 1 Laserfaser mit der Entwicklung beim Gebrauch von 2 Laserfasern zu vergleichen. Zudem wurde untersucht, ob die Temperaturdiffusion in normalem Lungengewebe von dem in Tumorgewebe abweicht. Material und Methoden: 48 Lungenpräparate, die nichtkleinzellige Bronchialkarzinome enthielten, wurden mit dem Ventilations- und Perfusionsmodell verbunden und mit 1 (22 Präparate, Gruppe 1) oder, in einer zweiten Phase, mit 1 (13 Präparate, Gruppe 2) oder 2 Laserfasern (13 Präparate, Gruppe 3) behandelt. Während der Ablation des Tumors wurde die Temperatur alle 5 s interstitiell gemessen. Ergebnisse: Eine Laserbehandlung und die Temperaturkontrolle war in allen Fällen technisch durchführbar. 30 min nach dem Beginn der Laserung mit 1 Faser wurde in 10 mm Entfernung von dieser eine Temperatur von 61 ± 17 °C in Gruppe 1 und von 74 ± 11 °C in Gruppe 2 erreicht (p = 0,1). In der Mitte zwischen 2 Laserfasern, die 20 mm voneinander entfernt waren, wurde eine Temperatur von 93 ± 7 °C erreicht. Nach 20-minütiger Ablation wurde in normalem Lungengewebe eine Temperatur von 77 ± 15 °C in 10 mm Entfernung erreicht. Schlussfolgerung: Das Ex-vivo-Modell ermöglicht die Durchführung der laserinduzierten Thermotherapie an einer perfundierten und ventilierten Lunge. Der Einsatz einer zweiten Laserfaser erhöht die Temperatur signifikant (p < 0,05). Die Temperaturentwicklung in normaler Lunge unterscheidet sich nicht signifikant von der in Tumorgewebe (p = 0,24).
Abstract
Purpose: In the present study we used an ex-vivo human lung cancer model to compare temperature diffusion during thermal ablation using one laser fiber to that of a two-fiber approach. Furthermore, we examined whether there was a difference between temperature diffusion in normal lung tissue and tumor tissue during laser ablation. Materials and Methods: 48 resected lung specimens containing non-small cell lung cancer were connected to a perfusion/ventilation apparatus and treated with 1 (22 specimens, group 1) or, in a second experiment, with 1 (13 specimens, group 2) or 2 (13 specimens, group 3) laser fibers. During tumor ablation, temperatures were measured interstitially every 5 sec. Laser ablation was followed by the taking of samples of 13 specimens for histological examination. For comparison we performed laser ablation in 7 specimens with normal lung tissue. Results: Laser treatment and temperature control were technically feasible in all samples. Thirty min after starting laser ablation with 1 fiber, a temperature of 61 ± 17 °C was achieved in group 1 at a distance of 10 mm from the laser fiber and a temperature of 74 ± 11 °C was achieved in group 2 (p = 0.1). In the middle between two active laser fibers placed 20 mm apart, a temperature of 93 ± 7 °C was achieved. The temperature reached in normal lung tissue after 20 min of laser ablation was 77 ± 15 °C at a distance of 10 mm from the laser fiber. Conclusion: The ex-vivo model allowed performance of laser-induced thermal ablation in the perfused and ventilated lung. The use of two laser fibers increases the achieved temperatures significantly (p < 0.05). Temperatures reached in normal lung tissue were as high as in tumor tissue (p = 0.24).
Key words
thorax - ablation procedures - interventional procedures
References
- 1
Goldberg S N, Gazelle G S, Compton C C et al.
Radiofrequency tissue ablation in the rabbit lung: efficacy and complications.
Acad Radiol.
1995;
2
776-784
MissingFormLabel
- 2
Goldberg S H, Gazelle G S, Comptom C C et al.
Radio-frequency tissue ablation of VX 2 tumor nodules in rabbit lung.
Acad Radiol.
1996;
3
929-935
MissingFormLabel
- 3
Dupuy D E, Zagoria R J, Akerley W et al.
Percutaneous radiofrequency ablation of malignancies in the lung.
AJR.
2000;
174
57-59
MissingFormLabel
- 4
Suh R, Wallace A, Sheehan R et al.
Unresectable pulmonary malignancies: CT-guided percutaneous radiofrequency ablation
– preliminary results.
Radiology.
2003;
229
821-829
MissingFormLabel
- 5
Lee J M, Jin G Y, Goldberg S N et al.
Percutaneous radiofrequency ablation for inoperable non-small cell lung cancer and
metastases: preliminary report.
Radiology.
2004;
230
125-134
MissingFormLabel
- 6
Hosten N, Stier A, Weigel C et al.
Laser-induced thermotherapy (LITT) of lung metastases: description of a miniaturized
applicator, optimization, and initial treatment of patients.
Fortschr Röntgenstr.
2003;
175
393-400
MissingFormLabel
- 7
Morrison P R, Sonnenberg van E, Shankar S et al.
Radiofrequency ablation of thoracic lesions: part 1, experiments in the normal porcine
thorax.
AJR.
2005;
184
375-380
MissingFormLabel
- 8
Wacker F K, Nour S G, Eisenberg R et al.
MRI-guided radiofrequency thermal ablation of normal lung tissue: in vivo study in
a rabbit model.
AJR.
2004;
183
599-603
MissingFormLabel
- 9
Linder A, Friedel G, Fritz P et al.
The ex-vivo isolated, perfused human lung model: description and potential applications.
Thorac Cardiovasc Surg.
1996;
44
140-146
MissingFormLabel
- 10
Goldberg S N, Grassi C J, Cardella J F et al.
Image-guided tumor ablation: standardization of terminology and reporting criteria.
Radiology.
2005;
235
728-739
MissingFormLabel
- 11 Horner M J, Ries L AG, Krapcho M et al. SEER Cancer Statistics Review, 1975 – 2006, National Cancer Institute. Bethesda, MD; http://seer.cancer.gov/csr/ 1975_2006 / based on November 2008 SEER data submission, posted to the SEER web site, last visited:
22.6.2009
MissingFormLabel
- 12
Vogl T J, Straub R, Eichler K et al.
Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy:
experience with complications in 899 Patients (2,520 lesions).
Radiology.
2002;
225
367-377
MissingFormLabel
- 13
Eickmeyer F, Schwarzmaier H J, Müller F P et al.
Survival after laser-induced interstitial thermotherapy of colorectal liver metastases
– a comparison of first clinical experiences with current therapy results.
Fortschr Röntgenstr.
2008;
180
35-41
MissingFormLabel
- 14
Bruners P, Schmitz-Rode T, Günther R W et al.
Multipolar hepatic radiofrequency ablation using up to six applicators: preliminary
results.
Fortschr Röntgenstr.
2008;
180
216-22
MissingFormLabel
- 15
Clasen S, Krober S M, Kosan B et al.
Pathomorphologic Evaluation of Pulmonary Radiofrequency Ablation: Proof of Cell Death
Is Characterized by DNA Fragmentation and Apoptotic Bodies.
Cancer.
2008;
113
3121-3129
MissingFormLabel
- 16
Yamamoto A, Nakamura K, Matsuoka T et al.
Radiofrequency Ablation in a Porcine Lung Model: Correlation Between CT and Histopathologic
Findings.
AJR.
2005;
185
1299-1306
MissingFormLabel
- 17
Cernicanu A, Lepetit-Coiffé M, Viallon M et al.
New horizons in MR-controlled and monitored radiofrequency ablation of liver tumours.
Cancer Imaging.
2007;
7
160-166
MissingFormLabel
- 18
Kühn J P, Puls R, Wallaschowski H et al.
Characteristics of necrosis after laser-induced thermotherapy in contrast-enhanced
MRI and implications for treatment success.
Fortschr Röntgenstr.
2008;
180
816-820
MissingFormLabel
- 19
Lee J M, Youk J H, Kim Y K et al.
Radio-frequency thermal ablation with hypertonic saline solution injection of the
lung: ex vivo and in vivo feasibility studies.
Eur Radiology.
2003;
13
2540-2547
MissingFormLabel
- 20
Liu S YW, Lee K F, Lai P BS.
Needle track seeding: a real hazard after percutaneous radiofrequency ablation for
colorectal liver tumors.
World J Gastroenterol.
2009;
15
1653-1655
MissingFormLabel
- 21
Imamura J, Tateishi R, Shiina S et al.
Neoplastic seeding after radiofrequency ablation for hepatocellular carcinoma.
Am J Gastroenterol.
2008;
103
3057-3062
MissingFormLabel
- 22
Ahmed M, Liu Z, Afzal K M et al.
Radiofrequency Ablation: effect of surrounding tissue composition on coagulation necrosis
in a canine tumor model.
Radiology.
2004;
230
761-767
MissingFormLabel
- 23
Haasbeek C JA, Senan S, Smit E F et al.
Critical review of non-surgical treatment options for stage I non-small cell lung
cancer.
The Oncologist.
2008;
13
309-319
MissingFormLabel
- 24
Zhu J C, Yan T D, Morris D L.
A systematic review of RFA for lung tumors.
Annals of Surgical Oncology.
2008;
15
1765-1774
MissingFormLabel
- 25
Gillams A.
Lung tumor ablation – where are we now.
Cancer Imaging.
2008;
8
116-117
MissingFormLabel
- 26 Germer C T, Isbert C, Roggan A. et al .Experimentelle Grundlagen der LITT – Energie und Temperaturfindung zur vollständigen
Ablation experimenteller Lebertumoren und potenzielle Ursachen einer Tumorrezidiventstehung. In Vogl T J, Mack M G, Balzer J O Lebermetastasen, Diagnose – Intervention – Therapie. Berlin, Heidelberg, New York: Springer; 2001: 221-235
MissingFormLabel
- 27
Goldberg S N, Gazelle G S, Compton C C et al.
Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic-pathologic
correlation.
Cancer.
2000;
88
2452-2463
MissingFormLabel
Miss Franziska Koch
Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universität Greifswald
Sauerbruchstraße
17487 Greifswald
Germany
Phone: ++ 49/38 34/86 69 60
Fax: ++ 49/38 34/86 70 97
Email: franzi_koch@hotmail.com