Subscribe to RSS
DOI: 10.1055/s-0029-1246014
© Georg Thieme Verlag KG Stuttgart · New York
Die Bedeutung axonaler Pathologie für das Konzept der Neurodegeneration bei der Multiplen Sklerose
Axonal Damage and its Significance for the Concept of Neurodegeneration in Multiple SclerosisPublication History
Publication Date:
10 March 2011 (online)

Zusammenfassung
Die Effektormechanismen der Multiplen Sklerose (MS) bleiben trotz großer Forschungsanstrengungen unverstanden. Das vorherrschende pathologische Verständnis beinhaltet das hierarchische Aufeinanderfolgen der Trias Inflammation, Demyelinisierung und Axonschaden. Doch neue Untersuchungen haben ergeben, dass axonale Degeneration auch unabhängig von Inflammation und Demyelinisierung auftreten kann. Ziel dieses Artikels ist die kritische Reevaluation des traditionellen Paradigmas der MS-Pathologie. Nicht nur sollen mögliche zelluläre, humorale und metabolische Mechanismen der Axonpathologie beleuchtet, sondern auch das isolierte Auftreten axonaler Schädigung kritisch diskutiert werden. Ein umfassendes Verständnis der pathogenetischen Mechanismen wird zur Verbesserung der Therapiemöglichkeiten bei MS beitragen. Diese sollten nicht mehr nur auf die inflammatorische, sondern auch auf die neurodegenerative Komponente der Erkrankung abzielen.
Abstract
In spite of tremendous scientific effort, the mechanisms underlying multiple sclerosis (MS) still remain to be elucidated. The prevalent pathogenetic concept adheres to the assumption of a strict hierarchical sequence of the triad inflammation, demyelination and axonal damage. However, recent studies have provided evidence that axonal pathology can occur independently of inflammation and demyelination. The present article critically re-evaluates the traditional paradigm of MS pathology. Potential cellular, humoral and metabolic mechanisms of axonal pathology are delineated and the development of isolated axonal damage is assessed. A better understanding of the pathological processes underlying MS is likely to result in an improvement of current therapeutic strategies. These should not only target the inflammatory, but also the neurodegenerative component of the disease.
Schlüsselwörter
Axonschaden - Demyelinisierung - EAE - Inflammation - MS
Keywords
axonal damage - demyelination - EAE - inflammation - MS
Literatur
- 1 Kornek B, Lassmann H. Axonal pathology in multiple sclerosis. A historical note. Brain Pathol. 1999; 9 651-656
- 2 Trapp B D, Peterson J, Ransohoff R M et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998; 338 278-285
- 3 Allen I V, McQuaid S, Mirakhur M et al. Pathological abnormalities in the normal-appearing white matter in multiple sclerosis. Neurol Sci. 2001; 22 141-144
- 4 Bitsch A, Schuchardt J, Bunkowski S et al. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain. 2000; 123 1174-1183
- 5 Goverman J, Brabb T. Rodent models of experimental allergic encephalomyelitis applied to the study of multiple sclerosis. Lab Anim Sci. 1996; 46 482-492
- 6 Kuerten S, Angelov D N. Comparing the CNS morphology and immunobiology of different EAE models in C 57BL/ 6 mice – a step towards understanding the complexity of multiple sclerosis. Ann Anat. 2008; 190 1-15
- 7 Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005; 23 683-747
- 8 Wucherpfennig K W. Mechanisms for the induction of autoimmunity by infectious agents. J Clin Invest. 2001; 108 1097-1104
- 9 Lehmann P V, Forsthuber T, Miller A et al. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature. 1992; 358 155-157
- 10 Hickey W F. Basic principles of immunological surveillance of the normal central nervous system. Glia. 2001; 36 118-124
- 11 Plumb J, McQuaid S, Mirakhur M et al. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol. 2002; 12 154-169
- 12 Yednock T A, Cannon C, Fritz L C et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature. 1992; 356 63-66
- 13 Kent S J, Karlik S J, Cannon C et al. A monoclonal antibody to alpha 4 integrin suppresses and reverses active experimental allergic encephalomyelitis. J Neuroimmunol. 1995; 58 1-10
- 14 Rudick R A, Stuart W H, Calabresi P A et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med. 2006; 354 911-923
- 15 Reboldi A, Coisne C, Baumjohann D et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol. 2009; 10 514-523
- 16 Menge T, Lalive P H, Büdingen H C et al. Antibody responses against galactocerebroside are potential stage-specific biomarkers in multiple sclerosis. J Allergy Clin Immunol. 2005; 116 453-459
- 17 Ehling von R, Lutterotti A, Wanschitz J et al. Increased frequencies of serum antibodies to neurofilament light in patients with primary chronic progressive multiple sclerosis. Mult Scler. 2004; 10 601-606
- 18 Silber E, Semra Y K, Gregson N A et al. Patients with progressive multiple sclerosis have elevated antibodies to neurofilament subunit. Neurology. 2002; 58 1372-1381
- 19 Mathey E K, Derfuss T, Storch M K et al. Neurofascin as a novel target for autoantibody-mediated axonal injury. J Exp Med. 2007; 204 2363-2372
- 20 Aloisi F, Ria F, Adorini L. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today. 2000; 21 141-147
- 21 Neumann H, Medana I M, Bauer J et al. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci. 2002; 25 313-319
- 22 Lucchinetti C, Brück W, Parisi J et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000; 47 707-717
- 23 Niepel G G, Constantinescu C S. Aetiology and pathogenesis of Multiple sclerosis. Hosp Pharm. 2003; 10 13-16
- 24 Lassmann H, Brück W, Lucchinetti C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med. 2001; 7 115-121
- 25 Coleman M P, Perry V H. Axon pathology in neurological disease: a neglected therapeutic target. Trends Neurosci. 2002; 25 532-537
- 26 Perry V H, Anthony D C. Axon damage and repair in multiple sclerosis. Philos Trans R Soc Lond B Biol Sci. 1999; 354 1641-1647
- 27 De Stefano N, Matthews P M, Fu L et al. Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain. 1998; 121 1469-1477
- 28 Ferguson B, Matyszak M K, Esiri M M et al. Axonal damage in acute multiple sclerosis lesions. Brain. 1997; 120 393-399
- 29 Batoulis H, Addicks K, Kuerten S. Emerging concepts in autoimmune encephalomyelitis beyond the CD 4 /T(H)1 paradigm. Ann Anat. 2010; 192 179-193
- 30 Rivera-Quiñones C, McGavern D, Schmelzer J D et al. Absence of neurological deficits following extensive demyelination in a class I-deficient murine model of multiple sclerosis. Nat Med. 1998; 4 187-193
- 31 Howe C L, Adelson J D, Rodriguez M. Absence of perforin expression confers axonal protection despite demyelination. Neurobiol Dis. 2007; 25 354-359
- 32 Medana I, Martinic M A, Wekerle H et al. Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes. Am J Pathol. 2001; 159 809-815
- 33 Neumann H, Schweigreiter R, Yamashita T et al. Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism. J Neurosci. 2002; 22 854-862
- 34 Piani D, Fontana A. Involvement of the cystine transport system xc- in the macrophage-induced glutamate-dependent cytotoxicity to neurons. J Immunol. 1994; 152 3578-3585
- 35 Pitt D, Werner P, Raine C S. Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med. 2000; 6 67-70
- 36 Bö L, Dawson T M, Wesselingh S et al. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol. 1994; 36 778-786
- 37 Redford E J, Kapoor R, Smith K J. Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain. 1997; 120 2149-2157
- 38 Mead R J, Singhrao S K, Neal J W et al. The membrane attack complex of complement causes severe demyelination associated with acute axonal injury. J Immunol. 2002; 168 458-465
- 39 Singhrao S K, Neal J W, Rushmere N K et al. Spontaneous classical pathway activation and deficiency of membrane regulators render human neurons susceptible to complement lysis. Am J Pathol. 2000; 157 905-918
- 40 Mao P, Reddy P H. Is multiple sclerosis a mitochondrial disease?. Biochim Biophys Acta. 2010; 1802 66-79
- 41 Schon E A, Manfredi G. Neuronal degeneration and mitochondrial dysfunction. J Clin Invest. 2003; 111 303-312
- 42 Dautry C, Vaufrey F, Brouillet E et al. Early N-acetylaspartate depletion is a marker of neuronal dysfunction in rats and primates chronically treated with the mitochondrial toxin 3-nitropropionic acid. J Cereb Blood Flow Metab. 2000; 20 789-799
- 43 Narayana P A, Doyle T J, Lai D et al. Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol. 1998; 43 56-71
- 44 De Stefano N, Narayanan S, Francis S J et al. Diffuse axonal and tissue injury in patients with multiple sclerosis with low cerebral lesion load and no disability. Arch Neurol. 2002; 59 1565-1571
- 45 Adams J H, Graham D I, Gennarelli T A et al. Diffuse axonal injury in non-missile head injury. J Neurol Neurosurg Psychiatry. 1991; 54 481-483
- 46 Kamal A, Stokin G B, Yang Z et al. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron. 2000; 28 449-459
- 47 Kamal A, Almenar-Queralt A, LeBlanc J F et al. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature. 2001; 414 643-648
- 48 Müller U, Kins S. APP on the move. Trends Mol Med. 2002; 8 152-155
- 49 Lunn M P, Crawford T O, Hughes R A et al. Anti-myelin-associated glycoprotein antibodies alter neurofilament spacing. Brain. 2002; 125 904-911
- 50 Edgar J M, McLaughlin M, Werner H B et al. Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1. Glia. 2009; 57 1815-1824
- 51 Lappe-Siefke C, Goebbels S, Gravel M et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet. 2003; 33 366-374
- 52 Morfini G A, Burns M, Binder L I et al. Axonal transport defects in neurodegenerative diseases. J Neurosci. 2009; 29 12 776-12 786
- 53 Wilkins A, Majed H, Layfield R et al. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. Neurosci. 2003; 23 4967-4974
- 54 Garbern J Y, Yool D A, Moore G J et al. Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain. 2002; 125 551-561
- 55 Chang A, Tourtellotte W W, Rudick R et al. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med. 2002; 346 165-173
- 56 De Stefano N, Matthews P M, Filippi M et al. Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology. 2003; 60 1157-1162
- 57 Narayanan S, De Stefano N, Francis G S et al. Axonal metabolic recovery in multiple sclerosis patients treated with interferon beta-1b. J Neurol. 2001; 248 979-986
- 58 Khan O, Shen Y, Caon C et al. Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing-remitting multiple sclerosis. Mult Scler. 2005; 11 646-651
- 59 Paolillo A, Coles A J, Molyneux P D et al. Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody Campath 1 H. Neurology. 1999; 53 751-757
- 60 Groom A J, Smith T, Turski L. Multiple sclerosis and glutamate. Ann N Y Acad Sci. 2003; 993 229-275
- 61 Kalkers N F, Barkhof F, Bergers E et al. The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis: a pilot study. Mult Scler. 2002; 8 532-533
Dr. Stefanie Kuerten
Institut I für Anatomie, Universität zu Köln
Joseph-Stelzmann-Str. 9
50931 Köln
Email: stefanie.kuerten@uk-koeln.de