Ultraschall Med 2012; 33(3): 236-244
DOI: 10.1055/s-0029-1246087
Review

© Georg Thieme Verlag KG Stuttgart · New York

Sonographic Assessment of Fetal Cardiac Function: Introduction and Direct Measurement of Cardiac Function

Sonografische Beurteilung der fetalen kardialen Funktion: Einleitung und direkte MessmethodenB. Tutschek1 , K. G. Schmidt2
  • 1Obstetrics and Gynecology, University Hospital
  • 2Pediatric Cardiology, Heinrich Heine University
Further Information

Publication History

received: 4.7.2010

accepted: 20.1.2011

Publication Date:
25 May 2011 (online)

Zusammenfassung

Die nicht invasive Untersuchung fetaler Blutflussmuster mit Doppler-Ultraschall ist das Hauptwerkzeug zur Beurteilung des Kreislaufzustands bedrohter Feten. Sie erfolgt meist durch eine qualitative Untersuchung peripherer Arterien und, in bestimmten klinischen Situationen wie Wachstumsretardierung oder Volumenüberlastung, auch an herznahen Venen oder an Flussmustern im fetalen Herz, um das Stadium der fetalen Kreislauf-Kompensation zu bewerten. Eine echte quantitative Beurteilung der treibenden Kraft des fetalen Kreislaufs, also die direkte Beurteilung des fetalen Herzauswurfs, ist aber weiterhin ein angestrebtes wichtiges Ziel in der Fetalmedizin. Teil 1 dieser Übersicht beschreibt das Konzept der Untersuchung der fetalen Herzfunktion und des „cardiac output“. Teil 2 fasst die Nutzen der fetalen Doppler-Untersuchungen zusammen und gibt eine Übersicht über die anderen Methoden zur direkten und indirekten Messung der fetalen kardialen Funktion einschließlich neuerer klinischer Anwendungen.

Abstract

Noninvasive blood flow measurements based on Doppler ultrasound studies are the main clinical tool for studying the cardiovascular status in fetuses at risk for circulatory compromise. Usually, qualitative analysis of peripheral arteries and, in particular clinical situations such as severe growth restriction or volume overload, also of venous vessels close to the heart or of flow patterns in the heart are being used to gauge the level of compensation in a fetus. Quantitative assessment of the driving force of the fetal circulation, the cardiac output, however, remains an elusive goal in fetal medicine. This article reviews the methods for direct and indirect assessment of cardiac function and explains new clinical applications. Part 1 of this review describes the concept of cardiac function and cardiac output and the techniques that have been used to quantify output. Part 2 summarizes the use of arterial and venous Doppler studies in the fetus and gives a detailed description of indirect measures of cardiac function (like indices derived from the duration of segments of the cardiac cycle) with current examples of their application.

References

  • 1 Sahn D J, Lange L W, Allen H D et al. Quantitative real-time cross-sectional echocardiography in the developing normal humam fetus and newborn.  Circulation. 1980;  62 588-597
  • 2 Allan L D, Joseph M C, Boyd E G et al. M-mode echocardiography in the developing human fetus.  Br Heart J. 1982;  47 573-583
  • 3 Sahn D, Kisslo J. Report of the Council on Scientific Affairs: ultrasonic imaging of the heart: report of the Ultrasonography Task Force.  Arch Intern Med. 1991;  151 1288-1294
  • 4 Peng Q H, Zhou Q C, Zeng S et al. Evaluation of regional left ventricular longitudinal function in 151 normal fetuses using velocity vector imaging.  Prenat Diagn. 2009;  29 1149-1155
  • 5 Allan L D, Chita S K, Al-Ghazali W et al. Doppler echocardiographic evaluation of the normal human fetal heart.  Br Heart J. 1987;  57 528-533
  • 6 Reed K L, Meijboom E J, Sahn D J et al. Cardiac Doppler flow velocities in human fetuses.  Circulation. 1986;  73 41-46
  • 7 Reed K L, Sahn D J, Scagnelli S et al. Doppler echocardiographic studies of diastolic function in the human fetal heart: changes during gestation.  J Am Coll Cardiol. 1986;  8 391-395
  • 8 Bhat A H, Corbett V, Carpenter N et al. Fetal ventricular mass determination on three-dimensional echocardiography: studies in normal fetuses and validation experiments.  Circulation. 2004;  110 1054-1060
  • 9 Bhat A H, Corbett V N, Liu R et al. Validation of volume and mass assessments for human fetal heart imaging by 4-dimensional spatiotemporal image correlation echocardiography: in vitro balloon model experiments.  J Ultrasound Med. 2004;  23 1151-1159
  • 10 Messing B, Cohen S M, Valsky D V et al. Fetal cardiac ventricle volumetry in the second half of gestation assessed by 4D ultrasound using STIC combined with inversion mode.  Ultrasound Obstet Gynecol. 2007;  30 142-151
  • 11 Hamill N, Romero R, Hassan S S et al. Repeatability and reproducibility of fetal cardiac ventricular volume calculations using spatiotemporal image correlation and virtual organ computer-aided analysis.  J Ultrasound Med. 2009;  28 1301-1311
  • 12 Simpson J. Echocardiographic evaluation of cardiac function in the fetus.  Prenat Diagn. 2004;  24 1081-1091
  • 13 Matsui M GH. Current aspects of fetal cardiovascular function.  Fetal and Maternal Medicine Review. 2008;  19 61-84
  • 14 Van Mieghem T, DeKoninck P, Steenhaut P et al. Methods for prenatal assessment of fetal cardiac function.  Prenat Diagn. 2009;  29 1193-1203
  • 15 Tutschek B, Sahn D J. Technical advances in fetal echocardiography. In Yagel S, Silverman N H, Gembruch U, eds Fetal cardiology.. 2nd edition. Informa Healhcare; 2009: 83-100
  • 16 Hornberger L K. Role of quantitative assessment in fetal echocardiography.  Ultrasound Obstet Gynecol. 2010;  35 4-6
  • 17 DeVore G R, Horenstein J, Platt L D. Fetal echocardiography. VI. Assessment of cardiothoracic disproportion – a new technique for the diagnosis of thoracic hypoplasia.  Am J Obstet Gynecol. 1986;  155 1066-1071
  • 18 Paladini D, Chita S K, Allan L D. Prenatal measurement of cardiothoracic ratio in evaluation of heart disease.  Arch Dis Child. 1990;  65 20-23
  • 19 Sahn D J, DeMaria A, Kisslo J et al. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements.  Circulation. 1978;  58 1072-1083
  • 20 DeVore G R, Siassi B, Platt L D. Fetal echocardiography. IV. M-mode assessment of ventricular size and contractility during the second and third trimesters of pregnancy in the normal fetus.  Am J Obstet Gynecol. 1984;  150 981-988
  • 21 DeVore G R. Assessing fetal cardiac ventricular function.  Semin Fetal Neonatal Med. 2005;  10 515-541
  • 22 Huhta J C. Guidelines for the evaluation of heart failure in the fetus with or without hydrops.  Pediatr Cardiol. 2004;  25 274-286
  • 23 Gandhi J A, Zhang X Y, Maidman J E. Fetal cardiac hypertrophy and cardiac function in diabetic pregnancies.  Am J Obstet Gynecol. 1995;  173 1132-1136
  • 24 Lachapelle M F, Leduc L, Cote J M et al. Potential value of fetal echocardiography in the differential diagnosis of twin pregnancy with presence of polyhydramnios-oligohydramnios syndrome.  Am J Obstet Gynecol. 1997;  177 388-394
  • 25 Teichholz L E, Kreulen T, Herman M V et al. Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy.  Am J Cardiol. 1976;  37 7-11
  • 26 Kronik G, Slany J, Mosslacher H. Comparative value of eight M-mode echocardiographic formulas for determining left ventricular stroke volume. A correlative study with thermodilution and left ventricular single-plane cineangiography.  Circulation. 1979;  60 1308-1316
  • 27 Simpson J M, Cook A. Repeatability of echocardiographic measurements in the human fetus.  Ultrasound Obstet Gynecol. 2002;  20 332-339
  • 28 Hsieh Y Y, Chang F C, Tsai H D et al. Longitudinal survey of fetal ventricular ejection and shortening fraction throughout pregnancy.  Ultrasound Obstet Gynecol. 2000;  16 46-48
  • 29 Carvalho J S, O’Sullivan C, Shinebourne E A et al. Right and left ventricular long-axis function in the fetus using angular M-mode.  Ultrasound Obstet Gynecol. 2001;  18 619-622
  • 30 Miller D, Farah M G, Liner A et al. The relation between quantitative right ventricular ejection fraction and indices of tricuspid annular motion and myocardial performance.  J Am Soc Echocardiogr. 2004;  17 443-447
  • 31 Gardiner H M, Pasquini L, Wolfenden J et al. Myocardial tissue Doppler and long axis function in the fetal heart.  Int J Cardiol. 2006;  113 39-47
  • 32 Lee W, Riggs T, Amula V et al. Fetal echocardiography: z-score reference ranges for a large patient population.  Ultrasound Obstet Gynecol. 2010;  35 28-34
  • 33 Tan J, Silverman N H, Hoffman J I et al. Cardiac dimensions determined by cross-sectional echocardiography in the normal human fetus from 18 weeks to term.  Am J Cardiol. 1992;  70 1459-1467
  • 34 Schneider C, McCrindle B W, Carvalho J S et al. Development of Z-scores for fetal cardiac dimensions from echocardiography.  Ultrasound Obstet Gynecol. 2005;  26 599-605
  • 35 Silverman N H, Ports T A, Snider A R et al. Determination of left ventricular volume in children: echocardiographic and angiographic comparisons.  Circulation. 1980;  62 548-557
  • 36 Schmidt K G, Silverman N H, Van Hare G F et al. Two-dimensional echocardiographic determination of ventricular volumes in the fetal heart. Validation studies in fetal lambs.  Circulation. 1990;  81 325-333
  • 37 Schmidt K G, Silverman N H, Hoffman J I. Determination of ventricular volumes in human fetal hearts by two-dimensional echocardiography.  Am J Cardiol. 1995;  76 1313-1316
  • 38 Schiller N B, Acquatella H, Ports T A et al. Left ventricular volume from paired biplane two-dimensional echocardiography.  Circulation. 1979;  60 547-555
  • 39 Yamamoto M, Essaoui M, Nasr B et al. Three-dimensional sonographic assessment of fetal urine production before and after laser surgery in twin-to-twin transfusion syndrome.  Ultrasound Obstet Gynecol. 2007;  30 972-976
  • 40 Duin L K, Willekes C, Vossen M et al. Reproducibility of fetal renal pelvis volume measurement using three-dimensional ultrasound.  Ultrasound Obstet Gynecol. 2008;  31 657-661
  • 41 Kusanovic J P, Nien J K, Goncalves L F et al. The use of inversion mode and 3D manual segmentation in volume measurement of fetal fluid-filled structures: comparison with Virtual Organ Computer-aided AnaLysis (VOCAL).  Ultrasound Obstet Gynecol. 2008;  31 177-186
  • 42 Rutten M J, Pistorius L R, Mulder E J et al. Fetal cerebellar volume and symmetry on 3-d ultrasound: volume measurement with multiplanar and vocal techniques.  Ultrasound Med Biol. 2009;  35 1284-1289
  • 43 Deng J, Gardener J E, Rodeck C H et al. Fetal echocardiography in three and four dimensions.  Ultrasound Med Biol. 1996;  22 979-986
  • 44 Meyer-Wittkopf M, Cole A, Cooper S G et al. Three-dimensional quantitative echocardiographic assessment of ventricular volume in healthy human fetuses and in fetuses with congenital heart disease.  J Ultrasound Med. 2001;  20 317-327
  • 45 Esh-Broder E, Ushakov F B, Imbar T et al. Application of free-hand three-dimensional echocardiography in the evaluation of fetal cardiac ejection fraction: a preliminary study.  Ultrasound Obstet Gynecol. 2004;  23 546-551
  • 46 Tutschek B, Sahn D J. Semi-automatic segmentation of fetal cardiac cavities: progress towards an automated fetal echocardiogram.  Ultrasound Obstet Gynecol. 2008;  32 176-180
  • 47 Herberg U, Luck S, Steinweg B et al. Volumetry of Fetal Hearts using 3D Real-Time Matrix Echocardiography – In Vitro Validation Experiments and 3D Echocardiographic Studies in Fetuses.  Ultraschall in Med. 2011;  32 46-53
  • 48 Herberg U, Steinweg B, Berg C et al. Echocardiography in the Fetus – A Systematic Comparative Analysis of Standard Cardiac Views with 2D, 3D Reconstructive and 3D Real-Time Echocardiography.  Ultraschall in Med,. published online 2010 DOI: 10.1055/s-0029-1245281
  • 49 Tutschek B, Sahn D J. Three-dimensional echocardiography for studies of the fetal heart: present status and future perspectives.  Cardiol Clin. 2007;  25 341-355
  • 50 DeVore G R, Falkensammer P, Sklansky M S et al. Spatio-temporal image correlation (STIC): new technology for evaluation of the fetal heart.  Ultrasound Obstet Gynecol. 2003;  22 380-387
  • 51 Molina F S, Faro C, Sotiriadis A et al. Heart stroke volume and cardiac output by four-dimensional ultrasound in normal fetuses.  Ultrasound Obstet Gynecol. 2008;  32 181-187
  • 52 Uittenbogaard L B, Haak M C, Peters R J et al. Validation of volume measurements for fetal echocardiography using four-dimensional ultrasound imaging and spatiotemporal image correlation.  Ultrasound Obstet Gynecol. 2010;  35 324-331
  • 53 Rizzo G, Capponi A, Cavicchioni O et al. Fetal cardiac stroke volume determination by four-dimensional ultrasound with spatio-temporal image correlation compared with two-dimensional and Doppler ultrasonography.  Prenat Diagn. 2007;  27 1147-1150
  • 54 Kenny J F, Plappert T, Doubilet P et al. Changes in intracardiac blood flow velocities and right and left ventricular stroke volumes with gestational age in the normal human fetus: a prospective Doppler echocardiographic study.  Circulation. 1986;  74 1208-1216
  • 55 Mielke G, Benda N. Cardiac output and central distribution of blood flow in the human fetus.  Circulation. 2001;  103 1662-1668
  • 56 De Smedt M C, Visser G H, Meijboom E J. Fetal cardiac output estimated by Doppler echocardiography during mid- and late gestation.  Am J Cardiol. 1987;  60 338-342
  • 57 Kenny J, Plappert T, Doubilet P et al. Effects of heart rate on ventricular size, stroke volume, and output in the normal human fetus: a prospective Doppler echocardiographic study.  Circulation. 1987;  76 52-58

Prof. Boris Tutschek

Obstetrics and Gynecology, University Hospital

Effingerstr. 102

3010 Bern

Switzerland

Phone:  ++ 41/31/6 32 10 10

Fax:  ++ 41/31/6 32 98 06

Email: tutschek@uni-duesseldorf.de

    >