Subscribe to RSS
DOI: 10.1055/s-0029-1246093
© Georg Thieme Verlag KG Stuttgart · New York
Störungen des Hämostasesystems: Molekulare Mechanismen als Grundlage von Diagnostik und Therapie
Hemostatic Disorders: Clinical Management Based on Molecular MechanismsPublication History
Publication Date:
10 March 2011 (online)

Lernziele
Die vorliegende Übersicht befasst sich mit der Physiologie, Pathophysiologie und klinisch-praktischen Aspekten des Hämostasesystems. Ziel ist es, folgende Kenntnisse zu vermitteln:
Komponenten des Hämostasesystems und ihre Funktion im Blutstillungsmechanismus, Stellgrößen und Störungen des hämostatischen Gleichgewichts, molekulare Mechanismen der Thrombozyten-Gefäßwand-Interaktion, Steuerung der plasmatischen Hämostase und Fibrinolyse, Thrombomodulin-Protein-C-System und Resistenz gegenüber aktiviertem Protein C, expositionelle und dispositionelle Ursachen einer Thromboseneigung, Potenzierung genetisch bedingter Kombinationsdefekte in Risikosituationen, angeborene und erworbene Ursachen einer Blutungsneigung, von-Willebrand-Faktor und von-Willebrand-Syndrom, antithrombotische Substanzen und deren Wirkmechanismus.
Literatur
- 1 Scharf R E. Thrombozyten und Mikrozirkulationsstörungen. Klinische und experimentelle Untersuchungen
zum Sekretionsverhalten und Arachidonsäurestoffwechsel der Blutplättchen. Stuttgart: Schattauer; 1986: 133-145 und 192 – 212
MissingFormLabel
- 2
Riess H.
Erworbene Koagulopathien.
Hämostaseologie.
2008;
28
348-357
MissingFormLabel
- 3
Koscielny J, Ziemer S, Radtke H et al.
A practical concept for preoperative identification of patients with impaired primary
hemostasis.
Clin Appl Thromb Hemost.
2004;
10
195-204
MissingFormLabel
- 4
Ruggeri Z M, Mendolicchio G L.
Adhesion mechanisms in platelet function.
Circ Res.
2007;
100
1673-1685
MissingFormLabel
- 5
Scharf R E.
Erworbene Plättchenfunktionsstörungen. Pathogenese, Klassifikation, Häufigkeit, Diagnostik
und Behandlung.
Hämostaseologie.
2008;
28
299-311
MissingFormLabel
- 6
Furlan M, Robles R, Galbusera M et al.
Von Willebrand factor cleaving protease in thrombotic thrombocytopenic purpura and
the hemolytic uremic syndrome.
N Engl J Med.
1998;
339
1578-1584
MissingFormLabel
- 7
Vincentelli A, Susen S, Le Torneau T et al.
Acquired von Willebrand syndrome in aortic stenosis.
N Engl J Med.
2003;
349
343-349
MissingFormLabel
- 8
Schneppenheim R, Budde U.
Angeborenes und erworbenes von-Willebrand-Syndrom.
Hämostaseologie.
2008;
28
312-319
MissingFormLabel
- 9 Scharf R E. Acquired platelet function defects: an underestimated but frequent cause of bleeding
complications in clinical practice. In Scharf R E, ed Progress and Challenges in Transfusion Medicine, Hemostasis, and Hemotherapy. Basel: Karger; 2008: 296-316
MissingFormLabel
- 10
Ruggeri Z M.
Platelet interactions with vessel wall components during thrombogenesis.
Blood Cell Mol Dis.
2006;
47
1903-1910
MissingFormLabel
- 11
Davie E W, Ratnoff O D.
Waterfall sequence for intrinsic blood clotting.
Science.
1964;
145
1310-1312
MissingFormLabel
- 12
Preissner K T.
Physiologie der Blutgerinnung und Fibrinolyse.
Hämostaseologie.
2008;
28
259-371
MissingFormLabel
- 13
Mann K G.
Biochemistry and physiology of blood coagulation.
Thromb Haemost.
1999;
82
164-174
MissingFormLabel
- 14 Edmunds L H, Salzman E W. Hemostatic problems, transfusion therapy, and cardiopulmonary bypass in patients. In Colman R W, (eds) Hemostasis & Thrombosis.. Philadelphia: Lippincott; 1994: 956-968
MissingFormLabel
- 15
Engelmann R, Luther T, Müller I.
Intravascular tissue factor pathway: a model for rapid initiation of coagulation within
the blood vessel.
Thromb Haemost.
2003;
89
3-8
MissingFormLabel
- 16
Scharf R E, Kirchhoff E M, Hoffmann T.
Detection and quantitation of platelet-derived microparticles and platelet-leukocyte
conjugates: a flow cytometric study in patients with prothrombotic states (in preparation).
MissingFormLabel
- 17
Müller F, Renné T.
Novel roles for factor XII-driven plasma contact activation system.
Curr Opin Hematol.
2008;
15
516-521
MissingFormLabel
- 18
Scharf R E.
Management of bleeding in patients using antithrombotic agents. Prediction, prevention,
protection, and problem-oriented intervention.
Hämostaseologie.
2009;
29
388-398
MissingFormLabel
- 19
Gailani D, Renné T.
The intrinsic pathway of coagulation: a target for treating thromboembolic disease?.
J Thromb Haemost.
2007;
5
1106-1112
MissingFormLabel
- 20
Stein P D, Hull R D, Patel K D et al.
D-dimer for the exclusion of acute venous thrombosis and pulmonary embolism.
Ann Intern Med.
2004;
140
489-602
MissingFormLabel
- 21
Scharf R E, Zotz R B.
Blood platelets and myocardial infarction: do hyperactive platelets really exist?.
Transf Med Hemother.
2006;
33
189-199
MissingFormLabel
- 22
Zotz R B, Scharf R E.
Platelet receptor polymorphisms and their role in cardiovascular disease.
J Lab Med.
2002;
26
584-593
MissingFormLabel
- 23
Ciccone A, Abraha I, Santilli I.
Glycoprotein IIb-IIIa inhibitors for acute ischemic stroke.
Stroke.
2007;
38
1113-1114
MissingFormLabel
- 24
Egeberg O.
Inherited AT deficiency causing thrombophilia.
Thromb Diath Haemorrh.
1965;
13
516-519
MissingFormLabel
- 25
Griffin J H, Evatt B, Zimmerman T S et al.
Deficiency of protein C in congenital thrombotic disease.
J Clin Invest.
1981;
68
1370-1373
MissingFormLabel
- 26
Mannhalter C.
Molekularbiologie und Hämostase.
Hämostaseologie.
2008;
28
272-288
MissingFormLabel
- 27
Rosendaal F R, Reitsma P H.
Genetics of venous thrombosis.
J Thromb Haemost.
2009;
7 (Suppl 1)
301-304
MissingFormLabel
- 28
Dahlbäck B, Carlsson M, Svensson P J.
Familial thrombophilia due to a previously unrecognized mechanism characterized by
poor anticoagulant response to activated protein C: prediction of a cofactor to activated
protein C.
Proc Natl Acad Sci USA.
1993;
90
1004-1008
MissingFormLabel
- 29
Bertina R, Koeleman B P, Koster T et al.
Mutation in blood coagulation factor V associated with resistance to activated protein
C.
Nature.
1994;
369
64-67
MissingFormLabel
- 30
Poort S R, Rosendaal F R, Reitsma P H et al.
A common genetic variation in the 3’ untranslated region of the prothrombin gene is
associated with elevated plasma prothrombin levels and increase in venous thrombosis.
Blood.
1996;
88
3698-3703
MissingFormLabel
- 31
Sartori M T, Wiman B, Vettore S et al.
4G/ 5G polymorphism of PAI-1 promotor and fibrinolytic capacity in patients with deep
vein thrombosis.
Thromb Haemost.
1998;
80
956-960
MissingFormLabel
- 32
Francis C W.
Plasminogen activator inhibitor-1 levels and polymorphisms. Association with venous
thrombosis.
Arch Pathol Lab Med.
2002;
126
1401-1404
MissingFormLabel
- 33 Scharf R E, Gerhardt A, Stoldt V et al. Klinische und experimentelle Thromboseforschung: Genetische Determinanten, molekulare
Mechanismen und therapeutische Strategien bei thrombotischen Komplikationen. Jahrbuch
der Heinrich-Heine-Universität 2006 / 2007. Düsseldorf: University Press; 2007: 105-126
MissingFormLabel
- 34
Gerhardt A, Scharf R E, Beckmann M W et al.
Prothrombin and factor V mutations in women with a history of thrombosis during pregnancy
and the puerperium.
N Engl J Med.
2000;
342
374-380
MissingFormLabel
- 35
Bray P F.
Platelet glycoprotein polymorphisms as risk factors for thrombosis.
Curr Opin Hematol.
2000;
7
284-289
MissingFormLabel
- 36
Zotz R B, Winkelmann B R, Scharf R E et al.
Polymorphism of platelet membrane glycoprotein IIIa: human platelet antigen 1b (HPA-1b/PlA2)
is an inherited risk factor for premature myocardial infarction in coronary artery
disease.
Thromb Haemost.
1998;
79
731-735
MissingFormLabel
- 37
Zotz R B, Winkelmann B R, Scharf R E et al.
Association of polymorphisms of platelet integrins αIIbβ3 (HPA-1b/Pl A 2) and α 2β1
(α2 807TT) with premature myocardial infarction.
J Thromb Haemost.
2005;
3
1522-1529
MissingFormLabel
- 38
Zotz R B, Stockschläder M, Scharf R E et al.
Platelet receptor polymorphisms of glycoprotein (GP) Ibα VNTR, GPIIb-IIIa (HPA-1),
and GPIa C 807 T and the risk of premature myocardial infarction.
Blood.
2003;
102
293a
MissingFormLabel
- 39
Zotz R B, Klein M, Scharf R E et al.
Prospective analysis after coronary-artery bypass grafting: platelet GPIIIa polymorphism
(HPA-1b/PlA2) is a risk factor for bypass occlusion, myocardial infarction, and death.
Thromb Haemost.
2000;
83
404-407
MissingFormLabel
- 40
Stoldt V R, Peveling J, Scharf R E et al.
Evaluation of platelet thrombus formation under flow.
Blood.
2005;
106
70b-71b
MissingFormLabel
- 41
Scharf R E, Gyenes M, Hasse M et al.
Enhanced outside-in signaling related to the Pro33 (HPA-1b) variant of platelet integrin
αIIbβ3.
J Thromb Haemost.
2009;
7
PP-WE-862
MissingFormLabel
- 42
Scharf R E, Hasse M, Reiff E et al.
CD40 ligand (CD40L) increases platelet thrombus stability and outside-in signaling
through integrin αIIb&beta3.
J Thromb Haemost.
2009;
7
AS-TH-060
MissingFormLabel
- 43
Zotz R B, Müller C, Scharf R E et al.
Glycoprotein Ia 8007TT and human platelet antigen 1b (HPA-1b) are risk determinants
for platelet thrombogenicity: a model for discrimination of risk factors for thrombogenicity
versus atherosclerosis.
Blood.
2000;
96
535a
MissingFormLabel
- 44
Greinacher A, Selleng K.
Thrombocytopenia in the intensive care unit patient. Hematology.
American Society of Hematology Education Program.
2010;
30
135-143
MissingFormLabel
- 45
Lo G K, Juhl D, Warkentin T E et al.
Evaluation of pretest clinical score (4T’s) for the diagnosis of heparin-induced thrombocytopenia
in two clinical settings.
J Thromb Haemost.
2006;
4
759-765
MissingFormLabel
- 46
Melchor J P, Strickland S.
Tissue Plasminogen activator in central nervous system physiology and pathology.
Thromb Haemost.
2005;
93
655-660
MissingFormLabel
- 47
Meltzer M E, Doggen C J, Groot de P G et al.
Fibrinolysis and the risk of venous or arterial thrombosis.
Curr Opin Hematol.
2007;
14
242-248
MissingFormLabel
Prof. Rüdiger Eberhard Scharf
Institut für Hämostaseologie, Hämotherapie und Transfusionsmedizin, Universitätsklinikum
Düsseldorf, Heinrich-Heine-Universität
Moorenstraße 5
40225 Düsseldorf
Email: rscharf@uni-duesseldorf.de