Zusammenfassung
Ossäre kraniofaziale Defekte sind eine häufige Komplikation nach operativer Korrektur
von Kraniosynostosen. Im vorgestellten Fall wird über die Rekonstruktion der Kalvaria
durch ein passgenaues computer-gestützt präfabriziertes bioaktives Implantat berichtet.
Mittels Fused-Deposition-Modeling, einer Rapid Prototyping Technologie, erfolgte präoperativ
nach computertomografischer Bildgebung die computer-gestützte Formgestaltung und Herstellung
eines biodegradierbaren medical grade PCL–TCP-Implantates (CAD/CAM-Verfahren). Dieses
konnte intraoperativ passgenau eingesetzt werden. Eine CT-Kontrollaufnahme nach sechs
Monaten zeigte eine beginnende ossäre Konsolidierung, es war kein Defektbereich mehr
zu tasten und der rekonstruierte Bereich fügte sich nahtlos in die natürliche anatomische
Form der Kalvaria ein.
Abstract
Osseous craniofacial defects are commonly seen problems after operative treatment
of craniosynostoses. This case report describes a calvarial reconstruction by means
of computer-aided fabrication of a customised implant. Three-dimensional imaging is
followed by computer-aided design and fabrication of a medical grade PCL–TCP biodegradable
scaffold using the rapid prototyping technology fused deposition modelling (CAD/CAM).
After six months the implant was well integrated, no defect area could be palpated
any more and a beginning bony consolidation could be detected via CT.
Schlüsselwörter
Kraniosynostosen - kraniofaziale Chirurgie - Kopf-Hals-Fehlbildungschirurgie - Rapid
Prototyping - CAD/CAM - PCL-TCP
Key words
craniosynostoses - craniofacial surgery - surgery of head and neck malformations -
rapid prototyping - CAD/CAM - PCL-TCP
Literatur
- 1
Burstein FD, Williams KJ, Hudgins R. et al .
Hydroxyapatitecement in craniofacial reconstruction: Experience in 150 patients.
Plast Reconstr Surg.
2006;
118
484-489
- 2
Chao MT, Jiang S, Smith D. et al .
Demineralized bone matrix and resorbable mesh bilaminate cranioplasty: a novel method
for reconstruction of large-scale defects in the pediatric calvaria.
Plast Reconstr Surg.
2009;
123
976-982
- 3
Chim H, Schantz JT.
New frontiers in calvarial reconstruction: integrating computer-assisted design and
tissue engineering in cranioplasty.
Plast Reconstr Surg.
2005;
116
1726-1741
- 4
Cutting C, Bookstein FL, Grayson B. et al .
Threedimensional computer-assisted design of craniofacial surgical procedures: Optimization
and interaction with cephalometric and computed tomographicbased models.
Plast Reconstr Surg.
1986;
77
877-887
- 5 Davies JE, Baksh D. Bone tissue engineering and biodegradable scaffolds.. In: Ikada Y,
Shimizu Y Tissue Engineering for Therapeutic Use Amsterdam: Elsevier Science; 2000.
15
- 6
Eppley BL, Kilgo M, Coleman JJ.
Cranial reconstruction with computer-generated hard-tissue replacement patient-matched
implants: Indications, surgical technique, and long-term follow-up.
Plast Reconstr Surg.
2002;
109
864-871
- 7
Eufinger H, Wehmoller M.
Individual prefabricated titanium implants in reconstructive craniofacial surgery:
Clinical and technical aspects of the first 22 cases.
Plast Reconstr Surg.
1998;
102
300-308
- 8
Gatti AM, Zaffe D, Poli GP.
Behaviour of tricalcium phosphate and hydroxyapatite granules in sheep bone defects.
Biomaterials.
1990;
11
513-517
- 9
Hutmacher DW, Schantz T, Zein I. et al .
Mechanical properties and cell cultural response of polycaprolactone scaffolds designed
and fabricated via fused deposition modeling.
J Biomed Mater Res.
2001;
55
203-216
- 10
Kellman RM.
Safe and dependable harvesting of large outer-table calvarial bone grafts.
Arch Otolaryngol Head Neck Surg.
1994;
8
856-860
- 11
Lao LL, Venkatraman SS, Peppas NA.
Modeling of drug release from biodegradable polymer blends.
Eur J Pharm Biopharm.
2008;
70
796-803
- 12
Laurie SW, Kaban LB, Mulliken JB. et al .
Donor site morbidity after harvesting rib and iliac bone.
Plast Reconstr Surg.
1984;
73
933-938
- 13 Perrin DE, English JP. Polycaprolactone.. In: Domb AJ, Kost J, Wiseman DM Handbook
of Biodegradable Polymers. Amsterdam: Haarwood; 1998: 63-77
- 14 Pitt CG, Schindler A. Biodegradation of polymers.. In: Bruck SD Controlled Drug
Delivery. Boca Raton: CRC Press; 1983: 55-80
- 15
Sawyer AA, Song SJ, Susanto E. et al .
The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds
loaded with rhBMP-2.
Biomaterials.
2009;
30
2479-2488
- 16
Schantz JT, Hutmacher DW, Lam CX. et al .
Repair of calvarial defects with customized tissue-engineered bone grafts: II. Evaluation
of cellular efficiency and efficacy in vivo.
Tissue Eng.
2003;
9
(S 01)
127-139
- 17
Schmidmaier G, Wildemann B, Lubberstedt M. et al .
IGF-I and TGF-beta 1 incorporated in a poly(D,L-lactide) implant coating stimulates
osteoblast differentiation and collagen-1 production but reduces osteoblast proliferation
in cell culture.
J Biomed Mater Res B Appl Biomater.
2003;
65
157-162
- 18
Schmidmaier G, Wildemann B, Stemberger A. et al .
Biodegradable poly(D,L-lactide) coating of implants for continuous release of growth
factors.
J Biomed Mater Res.
2001;
58
449-455
- 19 Schmitz HJ, Tolxdorff T, Honsbrok J. et al .3D-based computer assisted manufacturing
of individual alloplastic implants for cranial and maxillofacial osteoplasties.. In:
Lemke HU, Rhodes ML, Jaffe CC, Felix R Computer-Assisted Radiology CAR ’89. Berlin:
Springer; 1989: 390-397
- 20
Selber JC, Brooks C, Kurichi JE. et al .
Long-term results following fronto-orbital reconstruction in nonsyndromic unicoronal
synostosis.
Plast Reconstr Surg.
2008;
121
251e-260e
- 21
Smith DM, Cooper GM, Mooney MP. et al .
Bone morphogenetic protein 2 therapy for craniofacial surgery: A practical review.
J Craniofac Surg.
2008;
19
1244-1259
- 22
Springer IN, Acil Y, Kuchenbecker S. et al .
Bone graft versus BMP-7 in a critical size defect--cranioplasty in a growing infant
model.
Bone.
2005;
37
563-569
- 23
Thomson RC, Yaszemski MJ, Powers JM. et al .
Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration.
Biomaterials.
1998;
19
1935-1943
- 24
Toth BA, Ellis DS, Stewart WB.
Computer-designed prostheses for orbitocranial reconstruction.
Plast Reconstr Surg.
1988;
81
315-324
- 25 Urist MR. The search for and the discovery of bone morphogenetic protein (BMP)..
In: Urist MR, O’Connor BT, Burwell RG Bone Grafts, Derivatives and Substitutes. Oxford:
Butterworth-Heinemann Ltd; 1994
- 26
Vandamme TF, Legras R.
Physico-mechanical properties of poly(-caprolactone) for the construction of rumino-reticulum
devices for grazing animals.
Biomaterials.
1995;
16
1395-1400
- 27
Vannier MW, Marsh JL, Warren JO.
Threedimensional CT reconstruction images for craniofacial surgical planning and evaluation.
Radiology.
1984;
150
179-1184
- 28
Zein I, Hutmacher DW, Tan KC. et al .
Fused deposition modeling of novel scaffold architectures for tissue engineering applications.
Biomaterials.
2002;
23
1169-1185
- 29
Zhou Y, Hutmacher DW, Varawan S-L. et al .
In vitro bone engineering based on polycaprolactone and polycaprolactone–tricalcium
phosphate composites.
Polym Int.
2007;
56
333-342
Korrespondenzadresse
Dr. Florian Andreas ProbstMD, DMD
Klinik für Mund-, Kiefer- und Gesichtschirurgie
Ludwig-Maximilians-Universität
Lindwurm Straße 2a
80337 München
Email: Florian.Probst@med.uni-muenchen.de