RSS-Feed abonnieren
DOI: 10.1055/s-0030-1253440
© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York
Mechanisms of Diabetic Nephropathy – Old Buddies and Newcomers Part 2
Publikationsverlauf
received 07.01.2010
first decision 07.01.2010
accepted 20.04.2010
Publikationsdatum:
23. Juli 2010 (online)

Abstract
The clinical translation of established pathomechanisms of diabetic nephropathy improved the outcome in patients with diabetic nephropathy. However, they fail to halt or even reverse diabetic nephropathy, even though the feasibility of disease reversal has been established. The second part of this review summarizes recent novel insights into the mechanisms of diabetic nephropathy focusing on novel candidate mechanisms of diabetic nephropathy. These studies emphasize a crucial role of endothelial dependent mechanisms, which, however, can not be viewed as independent determinants of diabetic nephropathy. Rather, the endothelial dependent mechanisms act in concert with other cellular systems, establishing an intra-glomerular cross-talk which determines the progression of diabetc nephropathy.
Key words
diabetes - nephropathy - disease mechanisms
References
- 1
Nakagawa T, Kosugi T, Haneda M. et al .
Abnormal angiogenesis in diabetic nephropathy.
Diabetes.
2009;
58
1471-1478
MissingFormLabel
- 2
Baelde HJ, Eikmans M, Lappin DW. et al .
Reduction of VEGF-A and CTGF expression in diabetic nephropathy is associated with
podocyte loss.
Kidney Int.
2007;
71
637-645
MissingFormLabel
- 3
Eremina V, Baelde HJ, Quaggin SE.
Role of the VEGF – a signaling pathway in the glomerulus: evidence for crosstalk between
components of the glomerular filtration barrier.
Nephron Physiol.
2007;
106
32-37
MissingFormLabel
- 4
Ku CH, White KE, Dei CA. et al .
Inducible overexpression of sFlt-1 in podocytes ameliorates glomerulopathy in diabetic
mice.
Diabetes.
2008;
57
2824-2833
MissingFormLabel
- 5
Nakagawa T.
Uncoupling of the VEGF-endothelial nitric oxide axis in diabetic nephropathy: an explanation
for the paradoxical effects of VEGF in renal disease.
Am J Physiol Renal Physiol.
2007;
292
F1665-F1672
MissingFormLabel
- 6
Neugebauer S, Baba T, Watanabe T.
Association of the nitric oxide synthase gene polymorphism with an increased risk
for progression to diabetic nephropathy in type 2 diabetes.
Diabetes.
2000;
49
500-503
MissingFormLabel
- 7
Zanchi A, Moczulski DK, Hanna LS. et al .
Risk of advanced diabetic nephropathy in type 1 diabetes is associated with endothelial
nitric oxide synthase gene polymorphism.
Kidney Int.
2000;
57
405-413
MissingFormLabel
- 8
Nakagawa T, Sato W, Glushakova O. et al .
Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic
nephropathy.
J Am Soc Nephrol.
2007;
18
539-550
MissingFormLabel
- 9
Zhao HJ, Wang S, Cheng H. et al .
Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic
mice.
J Am Soc Nephrol.
2006;
17
2664-2669
MissingFormLabel
- 10
Nakagawa T, Sato W, Sautin YY. et al .
Uncoupling of vascular endothelial growth factor with nitric oxide as a mechanism
for diabetic vasculopathy.
J Am Soc Nephrol.
2006;
17
736-745
MissingFormLabel
- 11
Davis B, Dei CA, Long DA. et al .
Podocyte-specific expression of angiopoetin-2 causes proteinuria and apoptosis of
glomerular endothelia.
J Am Soc Nephrol.
2007;
18
2320-2329
MissingFormLabel
- 12
Isermann B, Vinnikov IA, Madhusudhan T. et al .
Activated protein C protects against diabetic nephropathy by inhibiting endothelial
and podocyte apoptosis.
Nat Med.
2007;
13
1349-1358
MissingFormLabel
- 13
Gilbert RE, Marsden PA.
Activated protein C and diabetic nephropathy.
N Engl J Med.
2008;
358
1628-1630
MissingFormLabel
- 14
Isermann B, Hendrickson SB, Zogg M. et al .
Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant
pathway and causes juvenile-onset thrombosis.
J Clin Invest.
2001;
108
537-546
MissingFormLabel
- 15
Weiler H, Isermann BH.
Thrombomodulin.
J Thromb Haemost.
2003;
1
1515-1524
MissingFormLabel
- 16
Fujiwara Y, Tagami S, Kawakami Y.
Circulating thrombomodulin and hematological alterations in type 2 diabetic patients
with retinopathy.
J Atheroscler Thromb.
1998;
5
21-28
MissingFormLabel
- 17
Borcea V, Morcos M, Isermann B. et al .
Influence of ramipril on the course of plasma thrombomodulin in patients with diabetes
mellitus.
Vasa.
1999;
28
172-180
MissingFormLabel
- 18
Matsumoto K, Yano Y, Gabazza EC. et al .
Inverse correlation between activated protein C generation and carotid atherosclerosis
in Type 2 diabetic patients.
Diabet Med.
2007;
24
1322-1328
MissingFormLabel
- 19
Isermann B, Sood R, Pawlinski R. et al .
The thrombomodulin-protein C system is essential for the maintenance of pregnancy.
Nat Med.
2003;
9
331-337
MissingFormLabel
- 20
Glaser CB, Morser J, Clarke JH. et al .
Oxidation of a specific methionine in thrombomodulin by activated neutrophil products
blocks cofactor activity. A potential rapid mechanism for modulation of coagulation.
J Clin Invest.
1992;
90
2565-2573
MissingFormLabel
- 21
Ceriello A, Esposito K, Ihnat M. et al .
Simultaneous control of hyperglycemia and oxidative stress normalizes enhanced thrombin
generation in type 1 diabetes.
J Thromb Haemost.
2009;
7
1228-1230
MissingFormLabel
- 22
Gupta A, Williams MD, Macias WL. et al .
Activated Protein C and Acute Kidney Injury: Selective Targeting of PAR-1.
Curr Drug Targets.
2009;
MissingFormLabel
- 23
Kaneider NC, Leger AJ, Agarwal A. et al .
‘Role reversal’ for the receptor PAR1 in sepsis-induced vascular damage.
Nat Immunol.
2007;
8
1303-1312
MissingFormLabel
- 24
Lassila M, Seah KK, Allen TJ. et al .
Accelerated nephropathy in diabetic apolipoprotein e-knockout mouse: role of advanced
glycation end products.
J Am Soc Nephrol.
2004;
15
2125-2138
MissingFormLabel
- 25
Gaede P, Lund-Andersen H, Parving HH. et al .
Effect of a multifactorial intervention on mortality in type 2 diabetes.
N Engl J Med.
2008;
358
580-591
MissingFormLabel
- 26
Proctor G, Jiang T, Iwahashi M. et al .
Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis
in Akita and OVE26 mice with type 1 diabetes.
Diabetes.
2006;
55
2502-2509
MissingFormLabel
- 27
Komers R, Lindsley JN, Oyama TT. et al .
Cyclo-oxygenase-2 inhibition attenuates the progression of nephropathy in uninephrectomized
diabetic rats.
Clin Exp Pharmacol Physiol.
2007;
34
36-41
MissingFormLabel
- 28
Abrahamian H, Endler G, Exner M. et al .
Association of low-grade inflammation with nephropathy in type 2 diabetic patients:
role of elevated CRP-levels and 2 different gene-polymorphisms of proinflammatory
cytokines.
Exp Clin Endocrinol Diabetes.
2007;
115
38-41
MissingFormLabel
- 29
Galkina E, Ley K.
Leukocyte recruitment and vascular injury in diabetic nephropathy.
J Am Soc Nephrol.
2006;
17
368-377
MissingFormLabel
- 30
Chow FY, Nikolic-Paterson DJ, Ozols E. et al .
Intercellular adhesion molecule-1 deficiency is protective against nephropathy in
type 2 diabetic db/db mice.
J Am Soc Nephrol.
2005;
16
1711-1722
MissingFormLabel
- 31
Xiao X, Ma B, Dong B. et al .
Cellular and humoral immune responses in the early stages of diabetic nephropathy
in NOD mice.
J Autoimmun.
2009;
32
85-93
MissingFormLabel
- 32
Moriya R, Manivel JC, Mauer M.
Juxtaglomerular apparatus T-cell infiltration affects glomerular structure in Type
1 diabetic patients.
Diabetologia.
2004;
47
82-88
MissingFormLabel
- 33
Sato W, Kosugi T, Zhang L. et al .
The pivotal role of VEGF on glomerular macrophage infiltration in advanced diabetic
nephropathy.
Lab Invest.
2008;
88
949-961
MissingFormLabel
- 34
Tarabra E, Giunti S, Barutta F. et al .
Effect of the monocyte chemoattractant protein-1/CC chemokine receptor 2 system on
nephrin expression in streptozotocin-treated mice and human cultured podocytes.
Diabetes.
2009;
58
2109-2118
MissingFormLabel
- 35
Pezzolesi MG, Katavetin P, Kure M. et al .
Confirmation of genetic associations at ELMO1 in the GoKinD collection supports its
role as a susceptibility gene in diabetic nephropathy.
Diabetes.
2009;
58
2698-2702
MissingFormLabel
- 36
Russo LM, Sandoval RM, Campos SB. et al .
Impaired tubular uptake explains albuminuria in early diabetic nephropathy.
J Am Soc Nephrol.
2009;
20
489-494
MissingFormLabel
- 37
Kato M, Zhang J, Wang M. et al .
MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen
expression via inhibition of E-box repressors.
Proc Natl Acad Sci U S A.
2007;
104
3432-3437
MissingFormLabel
- 38
Mahimainathan L, Das F, Venkatesan B. et al .
Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor
suppressor PTEN.
Diabetes.
2006;
55
2115-2125
MissingFormLabel
- 39
Zhang Z, Peng H, Chen J. et al .
MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy
in db/db mice.
FEBS Lett.
2009;
583
2009-2014
MissingFormLabel
- 40
Kato M, Putta S, Wang M. et al .
TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting
PTEN.
Nat Cell Biol.
2009;
11
881-889
MissingFormLabel
- 41
Dai C, Stolz DB, Kiss LP. et al .
Wnt/beta-catenin signalling promotes podocyte dysfunction and albuminuria.
J Am Soc Nephrol.
2009;
20
1997-2008
MissingFormLabel
- 42
Lee SH, Kim MH, Han HJ.
Arachidonic acid potentiates hypoxia-induced VEGF expression in mouse embryonic stem
cells: involvement of Notch, Wnt, and HIF-1alpha.
Am J Physiol Cell Physiol.
2009;
297
C207-C216
MissingFormLabel
- 43
Wang SN, Lapage J, Hirschberg R.
Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy.
J Am Soc Nephrol.
2001;
12
2392-2399
MissingFormLabel
- 44
Dolan V, Murphy M, Sadlier D. et al .
Expression of gremlin, a bone morphogenetic protein antagonist, in human diabetic
nephropathy.
Am J Kidney Dis.
2005;
45
1034-1039
MissingFormLabel
- 45
Wang S, Chen Q, Simon TC. et al .
Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy.
Kidney Int.
2003;
63
2037-2049
MissingFormLabel
- 46
Walsh DW, Roxburgh SA, McGettigan P. et al .
Co-regulation of Gremlin and Notch signalling in diabetic nephropathy.
Biochim Biophys Acta.
2008;
1782
10-21
MissingFormLabel
- 47
Lee SH, Kim MH, Han HJ.
Arachidonic acid potentiates hypoxia-induced VEGF expression in mouse embryonic stem
cells: involvement of Notch, Wnt, and HIF-1alpha.
Am J Physiol Cell Physiol.
2009;
297
C207-C216
MissingFormLabel
- 48
Niranjan T, Bielesz B, Gruenwald A. et al .
The Notch pathway in podocytes plays a role in the development of glomerular disease.
Nat Med.
2008;
14
290-298
MissingFormLabel
- 49
Walsh DW, Roxburgh SA, McGettigan P. et al .
Co-regulation of Gremlin and Notch signalling in diabetic nephropathy.
Biochim Biophys Acta.
2008;
1782
10-21
MissingFormLabel
Correspondence
Dr. B. Isermann
Universität Heidelberg
Innere Medizin I
INF 410
69120 Heidelberg
Germany
Telefon: + 49/06221/563 8608
eMail: berend.isermann@med.uni-heidelberg.de