Int J Sports Med 2010; 31(9): 604-609
DOI: 10.1055/s-0030-1255064
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Relationship Between Ventilatory Thresholds and Systolic Blood Pressure Variability

F. Cottin1 , P. Le Moing1 , C. Filliau1 , V. Martin1 , Y. Papelier2
  • 1Unité de Biologie Intégrative des Adaptations á I'Exercice (UBIAE), Institut National de la Santé et de la Recherche Médicale (INSERM) 902/EA 3872, Genopole, Evry, France
  • 2Laboratory of Physiology, Medicine Faculty, University of Paris-Sud, E.F.R., Hôpital Antoine Béclére, Clamart, France
Further Information

Publication History

accepted after revision April 30, 2010

Publication Date:
29 June 2010 (online)

Abstract

During exercise, an increase in respiratory rate amplifies the blood pressure oscillations. This phenomenon is usually intensified when exercise rate exceeds the ventilatory thresholds (VTs). The present study examined whether VTs assessment was possible from systolic blood pressure variability (SBPV) analysis to give blood pressure ventilatory thresholds (BPVTs). Blood pressure, ECG, and Ventilatory equivalents (VE/VO2, VE/VCO2) were collected from 15 well-trained subjects during an incremental exhaustive test performed on a cycloergometer. The “Short-Time Fourier Transform” was applied to SBP series to compute the instantaneous high frequency SBPV power (HF-SBPV). BPVTs were determined in all but 3 subjects. For the 12 remaining subjects, visual examination of ventilatory equivalents and HF-SBPV power revealed 2 thresholds for both methods. There was no difference between the first (VT1 235±60 vs. BPVT1 226±55 W, p=0.063) and second (VT2 293±67 vs. BPVT2 301±66 W, p=0.063) thresholds. However, BPVT1 was slightly underestimated compared to VT1 (9.9±15.4 W) given lower limit of agreement (LOA) at −19.9 W and higher at 40.4 W. BPVT2 was over-estimated compared to VT2 (−8.8±11.2 W) given lower LOA at −30.9 W and higher at 13.4 W. Thus, BPVTs determination appears useful in conditioning programs with sedentary or pathological subjects but probably not with trained subjects.

References

  • 1 Ahmaidi S, Hardy JM, Varray A, Collomp K, Mercier J, Prefaut C. Respiratory gas exchange indices used to detect the blood lactate accumulation threshold during an incremental exercise test in young athletes.  Eur J Appl Physiol. 1993;  66 31-36
  • 2 Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine.  Sports Med. 1998;  26 217-238
  • 3 Bartels MN, Jelic S, Ngai P, Gates G, Newandee D, Reisman SS, Basner RC, De Meersman RE. The effect of ventilation on spectral analysis of heart rate and blood pressure variability during exercise.  Respir Physiol Neurobiol. 2004;  144 91-98
  • 4 Blain G, Meste O, Bouchard T, Bermon S. Assessment of ventilatory thresholds during graded and maximal exercise test using time varying analysis of respiratory sinus arrhythmia.  Br J Sport Med. 2005;  39 448-452
  • 5 Blain G, Meste O, Bermon S. Influences of breathing patterns on respiratory sinus arrhythmia during exercise.  Am J Physiol. 2005;  288 H887-H895
  • 6 Bland JM, Altman DG. Statistical methods for assessing agreement between 2 methods of clinical measurement.  Lancet. 1986;  307-310
  • 7 Buchheit M, Solano R, Millet GP. Heart-rate deflection point and the second heart-rate variability threshold during running exercise in trained boys.  Pediatr Exerc Sci. 2007;  19 192-204
  • 8 Clark JM, Hagerman FC, Gefland R. Breathing patterns during submaximal and maximal exercise in elite oarsmen.  J Appl Physiol. 1983;  55 440-446
  • 9 Cottin F, Médigue C, Papelier Y. Effect of heavy exercise on spectral baroreflex sensitivity, heart rate and blood pressure variability in well-trained humans.  Am J Physiol. 2008;  295 H1150-H1155
  • 10 Cottin F, Médigue C, Lopes P, Leprêtre P M, Heubert R, Billat VL. Ventilatory thresholds assessment from heart rate variability during an incremental running test.  Int J Sports Med. 2007;  28 287-294
  • 11 Cottin F, Leprêtre PM, Lopes P, Papelier Y, Médigue C, Billat VL. Assessment of ventilatory thresholds from heart rate variability in well-trained subjects during cycling.  Int J Sports Med. 2006;  27 959-967
  • 12 Cottin F, Papelier Y, Escourrou P. Effects of exercise load and breathing frequency on heart rate and blood pressure variability during dynamic exercise.  Int J Sports Med. 1999;  20 232-238
  • 13 Gabor D. Theory of communication.  J Int Elec Eng. 1946;  93 429-457
  • 14 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 15 Idema RN, Van Den Meiracker AH, Imholz BP, Man In’t Veld AJ, Ritsema Van Eck AD, Settels JJ, Schalekamp AD. Comparison of Finapres non invasive beat to beat finger blood pressure with intrabrachial artery pressures during and after bicycle ergometry.  J Hypertens. 1989;  7 S58-S59
  • 16 Imholz BPM, Wieling W, Langewouters GJ, Montfrans GA. Continuous finger arterial pressure: utility in the cardiovascular laboratory.  Clin Auton Res. 1991;  1 43-45
  • 17 Macor F, Fagard R, Amery A. Power spectral analysis of RR interval and blood pressure short-term variability at rest and during dynamic exercise: Comparison between cyclists and controls.  Int J Sports Med. 1996;  17 175-181
  • 18 Reinhard U, Muller PH, Schmulling RM. Determination of anaerobic threshold by the ventilation equivalent in normal individuals.  Respiration. 1979;  38 36-42
  • 19 Rowell LB. Human Cardiovascular Control. New York: Oxford University Press; 1993: 42-43
  • 20 Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology . Heart rate variability. Standards of measurement, physiological interpretation, and clinical use.  Circulation. 1996;  93 1043-1065
  • 21 Taylor JA, Eckberg DL. Fundamental relations between short-term R-R interval and arterial pressure oscillations in humans.  Circulation. 1996;  93 1527-1532

Correspondence

Dr. Francois Cottin

Unité de Biologie Intégrative

des Adaptations á I'Exercice

(UBIAE), Institut National de

la Santé et de la Recherche

Médicale (INSERM) 902/EA

3872, Genopole

Boulevard F. Mitterrand

91025 Evry cedex

France

Phone: +33/169/644 881

Fax: +33/169/644 895

Email: francois.cottin@univ-evry.fr

    >