Int J Sports Med 2010; 31(9): 656-670
DOI: 10.1055/s-0030-1255065
Genetics & Molecular Biology

© Georg Thieme Verlag KG Stuttgart · New York

Regulation of Muscle Genes by Moderate Exercise

Y. Nishida1 , H. Tanaka2 , T. Tobina2 , K. Murakami2 , N. Shono3 , M. Shindo2 , W. Ogawa4 , M. Yoshioka5 , J. St-Amand6
  • 1Saga University, Department of Preventive Medicine, Faculty of Medicine,Saga, Japan
  • 2Fukuoka University, Faculty of Sport and Health Science, Fukuoka, Japan
  • 3Institute of Lifestyle Medical Science, ILMS, Saga, Japan
  • 4Kobe University Graduate School of Medicine, Department of Internal Medicine, Kobe, Japan
  • 5Functional Genomics Laboratory, Molecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL) and Laval University, Quebec, Canada
  • 6CHUL Research Center, CREMO, Quebec, Canada
Further Information

Publication History

accepted after revision May 10, 2010

Publication Date:
29 June 2010 (online)

Abstract

Moderate-intensity exercise at the lactate threshold (LT) is considered to be a safe and effective training regimen for improving metabolic syndrome. The aim of the current study was to investigate the effects of moderate exercise performed at the LT on skeletal muscle gene expression. 6 healthy men participated in cycle ergometer training at LT, 60 min/d, 5 d/wk for 12 wks. Muscle samples were collected after 5 d of training, and then 2 d after training at wks 6 and 12. Quantitative real-time PCR analysis revealed that the expression of peroxisome proliferator activated receptor co-activated 1α was significantly increased at 1 h after the training session on day 5. Moreover, using serial analysis gene expression, we found that moderate training for 6 and 12 wks simultaneously induced the expression of a number of metabolic genes involved in the TCA cycle, β-oxidation, and electron transport. Furthermore, several genes encoding antioxidant enzymes and contractile apparatus were induced. The expression levels of 233 novel transcripts were also altered in response to moderate exercise. Thus, moderate training at the LT is a sufficient stimulus to induce the expression of numerous genes implicated in the development of metabolic syndrome, transcripts involved in the contractile apparatus, and novel transcripts.

References

  • 1 Optimum physical performance capacity in adults: Report of a WHO Scientific Group.  World Health Organ Tech Rep Ser. 1969;  436 1-32
  • 2 Akamine R, Yamamoto T, Watanabe M, Yamazaki N, Kataoka M, Ishikawa M, Ooie T, Baba Y, Shinohara Y. Usefulness of the 5′ region of the cDNA encoding acidic ribosomal phosphoprotein P0 conserved among rats, mice, and humans as a standard probe for gene expression analysis in different tissues and animal species.  J Biochem Biophys Methods. 2007;  70 481-486
  • 3 Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha.  Nature. 2008;  451 1008-1012
  • 4 Essen B, Hagenfeldt L, Kaijser L. Utilization of blood-borne and intramuscular substrates during continuous and intermittent exercise in man.  J Physiol. 1977;  265 489-506
  • 5 Goldman RF, Buskirk ER. A method for underwater weighing and the determination of body density.  In Techniques for Measuring Body Composition. Brozek J, Hershel A (eds). 1961;  78-89
  • 6 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 7 Hittel DS, Kraus WE, Tanner CJ, Houmard JA, Hoffman EP. Exercise training increases electron and substrate shuttling proteins in muscle of overweight men and women with the metabolic syndrome.  J Appl Physiol. 2005;  98 168-179
  • 8 Knoll KE, Pietrusz JL, Liang M. Tissue-specific transcriptome responses in rats with early streptozotocin-induced diabetes.  Physiol Genomics. 2005;  21 222-229
  • 9 Kraus WE, Torgan CE, Duscha BD, Norris J, Brown SA, Cobb FR, Bales CW, Annex BH, Samsa GP, Houmard JA, Slentz CA. Studies of a targeted risk reduction intervention through defined exercise (STRRIDE).  Med Sci Sports Exerc. 2001;  33 1774-1784
  • 10 Lash AE, Tolstoshev CM, Wagner L, Schuler GD, Strausberg RL, Riggins GJ, Altschul SF. SAGEmap: a public gene expression resource.  Genome Res. 2000;  10 1051-1060
  • 11 Lillioja S, Young AA, Culter CL, Ivy JL, Abbott WG, Zawadzki JK, Yki-Jarvinen H, Christin L, Secomb TW, Bogardus C. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man.  J Clin Invest. 1987;  80 415-424
  • 12 Miyake K, Ogawa W, Matsumoto M, Nakamura T, Sakaue H, Kasuga M. Hyperinsulinemia, glucose intolerance, and dyslipidemia induced by acute inhibition of phosphoinositide 3-kinase signaling in the liver.  J Clin Invest. 2002;  110 1483-1491
  • 13 Motoyama M, Sunami Y, Kinoshita F, Irie T, Sasaki J, Arakawa K, Kiyonaga A, Tanaka H, Shindo M. The effects of long-term low intensity aerobic training and detraining on serum lipid and lipoprotein concentrations in elderly men and women.  Eur J Appl Physiol. 1995;  70 126-131
  • 14 Motoyama M, Sunami Y, Kinoshita F, Kiyonaga A, Tanaka H, Shindo M, Irie T, Urata H, Sasaki J, Arakawa K. Blood pressure lowering effect of low intensity aerobic training in elderly hypertensive patients.  Med Sci Sports Exerc. 1998;  30 818-823
  • 15 Nishida Y, Higaki Y, Tokuyama K, Fujimi K, Kiyonaga A, Shindo M, Sato Y, Tanaka H. Effect of mild exercise training on glucose effectiveness in healthy men.  Diabetes Care. 2001;  24 1008-1013
  • 16 Nishida Y, Tokuyama K, Nagasaka S, Higaki Y, Shirai Y, Kiyonaga A, Shindo M, Kusaka I, Nakamura T, Ishibashi S, Tanaka H. Effect of moderate exercise training on peripheral glucose effectiveness, insulin sensitivity, and endogenous glucose production in healthy humans estimated by a 2-compartment-labeled minimal model.  Diabetes. 2004;  53 315-320
  • 17 O’Neill DS, Zheng D, Anderson WK, Dohm GL, Houmard JA. Effect of endurance exercise on myosin heavy chain gene regulation in human skeletal muscle.  Am J Physiol. 1999;  276 R414-R419
  • 18 Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1.  Proc Natl Acad Sci USA. 2003;  100 8466-8471
  • 19 Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle.  J Physiol. 2003;  546 851-858
  • 20 Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator.  Endocr Rev. 2003;  24 78-90
  • 21 Radom-Aizik S, Hayek S, Shahar I, Rechavi G, Kaminski N, Ben-Dov I. Effects of aerobic training on gene expression in skeletal muscle of elderly men.  Med Sci Sports Exerc. 2005;  37 1680-1696
  • 22 Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, Meier CA, Bell DR, Kralli A, Giacobino JP, Deriaz O. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle.  Diabetes. 2003;  52 2874-2881
  • 23 Russell AP, Hesselink MK, Lo SK, Schrauwen P. Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise.  FASEB J. 2005;  19 986-988
  • 24 Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance.  Physiol Rev. 1996;  76 371-423
  • 25 Schneider DA, McGuiggin ME, Kamimori GH. A comparison of the blood lactate and plasma catecholamine thresholds in untrained male subjects.  Int J Sports Med. 1992;  13 562-566
  • 26 Shono N, Urata H, Saltin B, Mizuno M, Harada T, Shindo M, Tanaka H. Effects of low intensity aerobic training on skeletal muscle capillary and blood lipoprotein profiles.  J Atheroscler Thromb. 2002;  9 78-85
  • 27 Short KR, Vittone JL, Bigelow ML, Proctor DN, Coenen-Schimke JM, Rys P, Nair KS. Changes in myosin heavy chain mRNA and protein expression in human skeletal muscle with age and endurance exercise training.  J Appl Physiol. 2005;  99 95-102
  • 28 Sriwijitkamol A, Coletta DK, Wajcberg E, Balbontin GB, Reyna SM, Barrientes J, Eagan PA, Jenkinson CP, Cersosimo E, DeFronzo RA, Sakamoto K, Musi N. Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study.  Diabetes. 2007;  56 836-848
  • 29 St-Amand J, Okamura K, Matsumoto K, Shimizu S, Sogawa Y. Characterization of control and immobilized skeletal muscle: an overview from genetic engineering.  FASEB J. 2001;  15 684-692
  • 30 Sunami Y, Motoyama M, Kinoshita F, Mizooka Y, Sueta K, Matsunaga A, Sasaki J, Tanaka H, Shindo M. Effects of low-intensity aerobic training on the high-density lipoprotein cholesterol concentration in healthy elderly subjects.  Metabolism. 1999;  48 984-988
  • 31 Teran-Garcia M, Rankinen T, Koza RA, Rao DC, Bouchard C. Endurance training-induced changes in insulin sensitivity and gene expression.  Am J Physiol. 2005;  288 E1168-E1178
  • 32 Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression.  Science. 1995;  270 484-487
  • 33 Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study.  J Appl Physiol. 2005;  98 160-167
  • 34 Yoshioka M, Tanaka H, Shono N, Shindo M, St-Amand J. Gene expression profile of sprinter's muscle.  Int J Sports Med. 2007;  28 1053-1058
  • 35 Zierath JR, Hawley JA. Skeletal muscle fiber type: influence on contractile and metabolic properties.  PLoS Biol. 2004;  2 e348

Correspondence

Dr. Yuichiro Nishida

Saga University

Department of Preventive

Medicine

Faculty of Medicine

5-1-1 Nabeshima

849-8501 Saga

Japan

Phone: +81/952/34 2287

Fax: +81/952/34 2065

Email: ynishida@cc.saga-u.ac.jp

    >