Abstract
A triphasic phase-vanishing (PV) system comprised of an alkane,
perfluorohexanes, and bromine was successfully combined by photoirradiation
to efficiently generate hydrogen bromide, which underwent radical
addition with 1-alkenes in the hydrocarbon layer to afford terminal
bromides in high yields.
Key words
fluorous solvent - phase-vanishing - photoirradiation - bromination - hydrogen bromide
References and Notes
<A NAME="RY01610ST-1">1 </A> For a general review on fluorous
chemistry, see:
Handbook of Fluorous
Chemistry
Gladysz JA.
Curran DP.
Horváth IT.
Wiley-VCH;
Weinheim:
2004.
For reviews on fluorous solvents,
see:
<A NAME="RY01610ST-2A">2a </A>
Ryu I.
Matsubara H.
Emnet C.
Gladysz JA.
Takeuchi S.
Nakamura Y.
Curran DP. In Green Reaction Media in Organic Synthesis
Mikami K.
Blackwell Publishing;
Oxford:
2005.
p.59
<A NAME="RY01610ST-2B">2b </A>
Matsubara H.
Ryu I. In Green Separation
Processes: Fundamentals and Applications
Afonso CAM.
Crespo JG.
Wiley-VCH;
Weinheim:
2005.
p.219
<A NAME="RY01610ST-3">3 </A>
Matsubara H.
Yasuda S.
Sugiyama H.
Ryu I.
Fujii Y.
Kita K.
Tetrahedron
2002,
58:
4071
<A NAME="RY01610ST-4">4 </A>
Matsubara H.
Maeda L.
Ryu I.
Chem.
Lett.
2005,
34:
1548
<A NAME="RY01610ST-5">5 </A>
Matsubara H.
Maeda L.
Sugiyama H.
Ryu I.
Synthesis
2007,
2901
For reviews on the ‘Phase-Vanishing’ method,
see:
<A NAME="RY01610ST-6A">6a </A>
Ryu I.
Matsubara H.
Nakamura H.
Curran DP.
Chem. Rec.
2008,
8:
351
<A NAME="RY01610ST-6B">6b </A>
Iskra J.
Lett.
Org. Chem.
2006,
3:
170
<A NAME="RY01610ST-7">7 </A>
Ryu I.
Matsubara H.
Yasuda S.
Nakamura H.
Curran DP.
J.
Am. Chem. Soc.
2002,
124:
12946
<A NAME="RY01610ST-8A">8a </A>
Nakamura H.
Usui T.
Kuroda H.
Ryu I.
Matsubara H.
Yasuda S.
Curran DP.
Org. Lett.
2003,
5:
1167
<A NAME="RY01610ST-8B">8b </A>
Matsubara H.
Yasuda S.
Ryu I.
Synlett
2003,
247
<A NAME="RY01610ST-8C">8c </A>
Rahman MT.
Kamata N.
Matsubara H.
Ryu I.
Synlett
2005,
2664
<A NAME="RY01610ST-8D">8d </A>
Matsubara H.
Tsukida M.
Yasuda S.
Ryu I.
J. Fluorine Chem.
2008,
129:
951
<A NAME="RY01610ST-9A">9a </A>
Jana NK.
Verkade JG.
Org. Lett.
2003,
5:
3787
<A NAME="RY01610ST-9B">9b </A>
Iskra J.
Stavber S.
Zupan M.
Chem.
Commun.
2003,
2496
<A NAME="RY01610ST-9C">9c </A>
Curran DP.
Werner S.
Org. Lett.
2004,
6:
1021
<A NAME="RY01610ST-9D">9d </A>
Podgoršek A.
Stavber S.
Zupan M.
Iskra J.
Eur. J. Org.
Chem.
2006,
483
<A NAME="RY01610ST-9E">9e </A>
Windmon N.
Dragojlovic V.
Tetrahedron Lett.
2008,
49:
6543
<A NAME="RY01610ST-9F">9f </A>
Windmon N.
Dragojlovic V.
Beilstein J. Org. Chem.
2008,
4:
29
<A NAME="RY01610ST-9G">9g </A>
Ma K.
Li S.
Weiss RG.
Org.
Lett.
2008,
10:
4155
<A NAME="RY01610ST-9H">9h </A>
van Zee NJ.
Dragojlovic V.
Org.
Lett.
2009,
11:
3190
<A NAME="RY01610ST-9I">9i </A>
Pels K.
Dragojlovic V.
Beilstein J. Org. Chem.
2009,
5:
75
<A NAME="RY01610ST-10">10 </A>
¹ H NMR of the
concentrated reaction mixture in entry 6 of Table 1 shows peaks
assigned to 2-bromo-2,4,4-trimethyl-pentane as the product, suggesting
that hydrogen abstraction from isooctane would occur selectively
at the tertiary position of isooctane.
<A NAME="RY01610ST-11A">11a </A>
Brown HC.
Lane CF.
J.
Am. Chem. Soc.
1970,
92:
7212
<A NAME="RY01610ST-11B">11b </A>
Brown HC.
Lane CF.
Tetrahedron
1988,
44:
2763
<A NAME="RY01610ST-11C">11c </A>
Falorni M.
Lardicci L.
Giacomelli G.
J.
Org. Chem.
1986,
51:
5291
<A NAME="RY01610ST-11D">11d </A>
Brown HC.
Lane CF.
J.
Am. Chem. Soc.
1970,
92:
6660
<A NAME="RY01610ST-11E">11e </A>
Brown HC.
Lane CF.
J.
Chem. Soc. D: Chem. Commun.
1971,
521
<A NAME="RY01610ST-11F">11f </A>
Lane
CF.
Brown HC.
J.
Organomet. Chem.
1971,
26:
C51
<A NAME="RY01610ST-11G">11g </A>
Tufariello JJ.
Hovey MM.
J.
Chem. Soc. D: Chem. Commun.
1970,
372
<A NAME="RY01610ST-11H">11h </A>
Kabalka GW.
Sastry KAR.
Hsu HC.
Hylarides MD.
J. Org. Chem.
1981,
46:
3113
<A NAME="RY01610ST-11I">11i </A>
Maruoka K.
Sano H.
Shinoda K.
Nakai S.
Yamamoto H.
J. Am.
Chem. Soc.
1986,
108:
6036
<A NAME="RY01610ST-11J">11j </A>
Tufariello JJ.
Hovey MM.
J.
Am. Chem. Soc.
1970,
92:
3221
<A NAME="RY01610ST-12A">12a </A>
Tamao K.
Yoshida J.
Takahashi M.
Yamamoto H.
Kakui T.
Matsumoto H.
Kurita A.
Kumada M.
J.
Am. Chem. Soc.
1978,
100:
290
<A NAME="RY01610ST-12B">12b </A>
Tamao K.
Yoshida J.
Yamamoto H.
Kakui T.
Matsumoto H.
Takahashi M.
Kurita A.
Murata M.
Kumada M.
Organometallics
1982,
1:
355
<A NAME="RY01610ST-13A">13a </A>
Hart DW.
Schwartz J.
J.
Am. Chem. Soc.
1974,
96:
8115
<A NAME="RY01610ST-13B">13b </A>
Tolstikov GA.
Miftakhov MS.
Valeev FA.
Izv. Akad. Nauk SSSR, Ser. Khim.
1979,
2576
<A NAME="RY01610ST-14A">14a </A>
Isagaga K.
Tatsumi K.
Otsuji Y.
Chem. Lett.
1977,
1117
<A NAME="RY01610ST-14B">14b </A>
Sato F.
Sato S.
Kodama H.
Sato M.
J. Organomet. Chem.
1977,
142:
71
<A NAME="RY01610ST-14C">14c </A>
Lee H.-S.
Kim
C.-E.
J. Korean Chem. Soc.
2003,
47:
297
<A NAME="RY01610ST-14D">14d </A>
Lee H.-S.
Lee G.-Y.
J. Korean Chem. Soc.
2005,
49:
321
<A NAME="RY01610ST-14E">14e </A>
Gavrilenko VV.
Kolesov VS.
Zakharkin LI.
Izv. Akad. Nauk SSSR, Ser. Khim.
1985,
681
<A NAME="RY01610ST-15">15 </A>
The reaction without fluorous phase
gave an inferior result. For example, irradiation of a mixture of
bromine (1.16 mmol) and isooctane (6 mL) with a 500 W Xe lamp for
30 min, followed by addition of 1-dodecene (1 mmol) at r.t., gave
1-bromododecane in 79% yield together with unreacted 1-dodecene
(11%). In this procedure, probably some HBr generated would
outgas during the reaction.
<A NAME="RY01610ST-16">16 </A> For an example of the use of HBr
to prepare key substrates for sequential radical reactions, see:
Zhang W.
Hua Y.
Geib SJ.
Hoge G.
Dowd P.
Tetrahedron
1994,
50:
12579
<A NAME="RY01610ST-17">17 </A>
Typical Procedure
for Photoirradiative Phase
-
Vanishing Hydrogen Bromide Addition to Alkenes (Table
2, entry 2): FC-72 (6 mL) was placed in a Pyrex test tube (13 mm Æ × 105
mm) to which bromine (2.1 mmol, 340 mg) was added slowly using a
glass pipette. Isooctane (1.5 mL) solution of 1-dodecene (2.0 mmol,
340 mg) was then added slowly, forming three layers. The test tube
was irradiated with a 500 W Xenon lamp for 2 h. The isooctane layer
was taken up with a pipette. Then, additional hexane (4 × 4
mL) was placed on the residual FC-72 layer, followed by decanting
off. The combined organic layer was washed with aq 10% Na2 S2 O3 (30
mL) and sat. brine (30 mL), dried over Na2 SO4 ,
and concentrated. Purification by a short column chromatography
on silica gel with hexane gave 1-bromo-dodecane (480 mg, 96%).