References and Notes
Synthetic chemistry:
<A NAME="RD25510ST-1A">1a </A>
Stead D.
O’Brien P.
Tetrahedron
2007,
63:
1885
Medicinal chemistry and pharmacology:
<A NAME="RD25510ST-1B">1b </A>
Jensen AA.
Frølund B.
Lijefors T.
Krogsgaard-Larsen P.
J.
Med. Chem.
2005,
48:
4705
<A NAME="RD25510ST-1C">1c </A>
Pabreza LA.
Dhawan S.
Kellar KJ.
Mol. Pharmacol.
1991,
39:
9
<A NAME="RD25510ST-1D">1d </A>
Papke RL.
Heinemann SF.
Mol.
Pharmacol.
1994,
45:
142
<A NAME="RD25510ST-2">2 </A>
Etter JF.
Arch.
Intern. Med.
2006,
166:
1553
<A NAME="RD25510ST-3A">3a </A>
Coe JW.
Brooks PR.
Vetelino MG.
Wirtz MC.
Arnold EP.
Huang J.
Sands SB.
Davis TI.
Lebel LA.
Fox CB.
Shrikhande A.
Heym JH.
Schaeffer E.
Rollema H.
Lu Y.
Mansbach RS.
Chambers LK.
Rovetti CC.
Schulz DW.
Tingley FD.
O’Neill BT.
J. Med. Chem.
2005,
48:
3474
<A NAME="RD25510ST-3B">3b </A>
Coe JW.
Vetelino MG.
Bashore CG.
Wirtz MC.
Brooks PR.
Arnold EP.
Lebel LA.
Fox CB.
Sands SB.
Davis TI.
Schulz DW.
Rollema H.
Tingley FD.
O’Neill BT.
Bioorg. Med. Chem. Lett.
2005,
15:
2974
<A NAME="RD25510ST-3C">3c </A>
Mihalak KB.
Carroll FI.
Luetje CW.
Mol. Pharmacol.
2006,
70:
801
<A NAME="RD25510ST-3D">3d </A>
Coe JW.
Rollema H.
O’Neill BT.
Ann. Rep. Med. Chem.
2009,
44:
71
<A NAME="RD25510ST-4A">4a </A>
Botuha C.
Galley CMS.
Gallagher T.
Org. Biomol. Chem.
2004,
2:
1825
<A NAME="RD25510ST-4B">4b </A>
Gray D.
Gallagher T.
Angew. Chem. Int. Ed.
2006,
45:
2419
<A NAME="RD25510ST-4C">4c </A>
Frigerio F.
Haseler
CA.
Gallagher T.
Synlett
2010,
729
<A NAME="RD25510ST-4D">4d </A>
Gallagher T.
Derrick I.
Durkin PM.
Haseler CA.
Hirschhäuser C.
Magrone P.
J. Org.
Chem.
2010,
75:
3766
<A NAME="RD25510ST-5">5 </A>
Yohannes D.
Procko K.
Lebel LA.
Fox CB.
O’Neill BT.
Bioorg. Med. Chem. Lett.
2008,
18:
2316
<A NAME="RD25510ST-6A">6a </A>
Imming P.
Klaperski P.
Stubbs MT.
Seitz G.
Gündisch D.
Eur. J. Med. Chem.
2001,
36:
375
<A NAME="RD25510ST-6B">6b </A>
Slater YE.
Houlihan LM.
Maskell PD.
Exley R.
Bermudez I.
Lukas RJ.
Valdivia AC.
Cassels BK.
Neuropharmacol.
2003,
44:
503
<A NAME="RD25510ST-7">7 </A>
Chellappan SK.
Xiao Y.
Tueckmantel W.
Kellar KJ.
Kozikowski AP.
J. Med. Chem.
2006,
49:
2673
<A NAME="RD25510ST-8">8 </A>
Leznoff CC.
Svirskaya PI.
Yedidia V.
Miller JM.
J. Heterocycl.
Chem.
1985,
22:
145
<A NAME="RD25510ST-9">9 </A>
The synthesis of 4-fluoropyridone 4 ,
[8 ]
which
involves separation of a mixture of 4- and 5-nitropyridines, proved problematic
in terms of extraction/isolation of the intermediate 4-amino-2-methoxypyridine.
Consequently, an alternative procedure
[¹0 ]
based on commercially
available 4-amino-2-chloropyridine was employed. While this still suffers
from issues of volatility associated with I ,
this intermediate was not isolated but was carried through directly
to pyridone 4 (Scheme
[5 ]
)
Scheme 5 Synthesis of 4-fluoropyridone
(4 )
<A NAME="RD25510ST-10A">10a </A>
Urban R.
Schnider O.
Helv.
Chim. Acta
1964,
47:
363
<A NAME="RD25510ST-10B">10b </A>
Morgentin R.
Pasquet G.
Boutron P.
Jung F.
Lamorlette M.
Maudet M.
Ple P.
Tetrahedron
2008,
64:
2772
<A NAME="RD25510ST-11">11 </A>
All novel compounds described were
prepared as racemates and have been characterized fully. Data for
key final compounds are presented.
Data
for 4-Fluorocytisine (8)
¹ H NMR
(400 MHz, CDCl3 ): δ = 1.96 (2 H, t, J = 3.0 Hz, H8),
2.31-2.37 (1 H, m, H9), 2.87-2.92 (1 H, m, H7),
2.96-3.14 (4 H, m, H11, H13), 3.87 (1 H, ddt, J = 15.5,
6.5, 1.0, 1.0 Hz, H10), 4.08 (1 H, d, J = 15.5
Hz, H10), 5.89 (1 H, dd, J = 7.0,
3.0 Hz, H5), 6.10 (1 H, dd, J = 11.0,
3.0 Hz, H3), no resonance attributed to NH was observed. ¹³ C
NMR (100 MHz, CDCl3 ): δ = 26.2 (CH2 ,
C8), 27.6 (CH, C9), 36.0 (d, J = 2.5
Hz, CH, C7), 49.8 (CH2 , C10), 52.9 (CH2 , C11),
53.7 (CH2 , C13), 96.5 (d, J = 26.0
Hz, CH, C5), 99.7 (d, J = 16.5 Hz,
CH, C3), 153.5 (d, J = 13.5
Hz, C, C6), 164.9 (d, J = 19.0
Hz, C=O, C2), 169.9 (d, J = 264.0
Hz, CF, C4). ¹9 F NMR (376 MHz, CDCl3 ): δ = -99.9
(m). HRMS: m/z calcd for C11 H14 FN2 O:
209.1090; found: 209.1095 [M + H]+ .
<A NAME="RD25510ST-12">12 </A>
Data for 4-Bromocytisine
(12)
¹ H NMR (400 MHz, CDCl3 ): δ = 1.55
(1 H, br s, NH), 1.96 (2 H, m, H8), 2.35 (1 H, m, H9), 2.89 (1 H,
m, H7), 2.98-3.12 (4 H, m, H11, H13), 3.86 (1 H, ddd, J = 15.5,
6.5, 1.0 Hz, H10), 4.06 (1 H, d, J = 15.5
Hz, H10), 6.20 (1 H, d, J = 2.0
Hz, H5), 6.70 (1 H, d, J = 2.5
Hz, H3). ¹³ C NMR (100 MHz, CDCl3 ): δ = 26.3
(CH2 , C8), 27.7 (CH, C9), 35.6 (CH, C7), 49.9 (CH2 ,
C10), 53.1, 53.8 (CH2 , C11, C13), 109.0 (CH, C5), 118.9
(CH, C3), 135.1 (C, C4), 151.6 (C, C6), 162.6 (C=O, C2).
HRMS: m/z calcd for C11 H13
79 BrN2 O: 268.0211;
found: 268.0216 [M]+ .
Data for 4-Chlorocytisine (13)
¹ H
NMR (400 MHz, CDCl3 ): d = 1.55 (1 H, br s, NH),
1.96 (2 H, m, H8), 2.35 (1 H, m, H9), 2.89 (1 H, m, H7), 2.98-3.12
(4 H, m, H11, H13), 3.87 (1 H, ddd, J = 15.6,
6.6, 1.2 Hz, H10), 4.08 (1 H, d, J = 15.6
Hz, H10), 6.07 (1 H, d, J = 2.0
Hz, H5), 6.50 (1 H, d, J = 2.2
Hz, H3). ¹³ C NMR (100 MHz, CDCl3 ):
d = 26.3 (CH2 , C8), 27.7 (CH, C9), 35.7 (CH, C7),
49.9 (CH2 , C10), 53.5, 54.2 (CH2 , C11, C13),
106.5 (CH, C5), 115.4 (CH, C3), 146.0 (C, C4), 151.6 (C, C6), 162.6
(C=O, C2). HRMS: m/z calcd
for C11 H14
³5 ClN2 O: 225.0795;
found: 225.0784 [M + H]+ .
<A NAME="RD25510ST-13">13 </A>
Stanetty P.
Turner M.
Mihovilovic MD.
Molecules
2005,
10:
367 ; and ref. 4d
<A NAME="RD25510ST-14">14 </A>
Data for Cyfusine
(17)
¹ H NMR (400 MHz, CDCl3 ): δ = 2.94
(1 H, dd, J = 11.0,
3.0 Hz, H6), 3.03-3.20 (3 H, m, H6, H8, H8a), 3.24 (1 H,
dd, J = 11.5,
7.5 Hz, H8), 3.87 (1 H, td, J = 8.0,
2.5 Hz, H5b), 4.00 (1 H, dd, J = 13.5,
3.5 Hz, H9), 4.33 (1 H, dd, J = 13.5, 9.0
Hz, H9), 6.10 (1 H, dt, J = 7.0,
1.0 Hz, H5), 6.41 (1 H, dt, J = 9.0,
1.0 Hz, H3), 7.37 (1 H, dd, J = 9.0,
7.0 Hz, H4), no resonance attributed to NH was observed. ¹³ C
NMR (100 MHz, CDCl3 ): δ = 38.5 (CH,
C8a), 50.9 (CH, C5b), 54.7 (CH2 , C8), 54.9 (CH2 ,
C6), 55.1 (CH2 , C9), 101.0 (CH, C5), 117.3 (CH, C3),
140.6 (CH, C4), 153.7 (C, C5a), 162.1 (C=O, C2). HRMS: m/z calcd for C10 H13 N2 O:
177.1028; found: 177.1023 [M + H]+ .
This compound has been reported previously,5 however,
no analytical data were provided and these have been included here
for comparison with 19 .¹5
<A NAME="RD25510ST-15">15 </A>
The following numbering system was
applied for 8-fluoro-2,3,3a,4-tetrahydro-1H -pyrrolo[3,4-a ]indolizin-6 (9bH )-one (19 ,
Figure
[² ]
), in order
to parallel that for cytisine.
Data
for 4-Fluorocyfusine (19)
¹ H NMR
(500 MHz, CDCl3 ): δ = 2.95 (1 H, dd, J = 11.0,
3.0 Hz, H6), 3.07-3.21 (3 H, m, H6, H8, H8a), 3.25 (1 H,
dd, J = 11.5,
7.5 Hz, H8), 3.85 (1 H, td, J = 8.0,
2.0 Hz, H5b), 3.96 (1 H, dd, J = 13.5,
3.5 Hz, H9), 4.30 (1 H, dd, J = 13.5, 8.5
Hz, H9), 5.97 (1 H, ddd, J = 6.5,
2.5, 1.0 Hz, H5), 6.05 (1 H, ddd, J = 11.0,
2.5, 1.0 Hz, H3), no resonance attributed to NH was observed. ¹³ C
NMR (125 MHz, CDCl3 ): δ = 38.6 (CH,
C8a), 50.7 (CH, C5b), 54.4 (CH2 , C8), 54.7 (CH2 ,
C6), 54.9 (CH2 , C9), 93.1 (d, J = 28.0
Hz, CH, C3), 100.5 (d, J = 17.5
Hz, CH, C5), 155.8 (d, J = 13.5
Hz, C, C5a), 162.5 (d, J = 18.5
Hz, C=O, C2), 171.9 (d, J = 265.0
Hz, CF, C4). ¹9 F NMR (376 MHz, CDCl3 ): δ = -97.14
(m). HRMS: m/z calcd for C10 H12 FN2 O:
195.0928; found: 195.0930 [M + H]+ .
Figure 2