References and Notes
For example:
<A NAME="RG25510ST-1A">1a</A>
Leung D.
Abbenante G.
Fairlie DP.
J.
Med. Chem.
2000,
43:
305
<A NAME="RG25510ST-1B">1b</A>
Olson GL.
Bolin DR.
Bonner MP.
Bös M.
Cook CM.
Fry DC.
Graves
BJ.
Hatada M.
Hill DE.
Kahn M.
Madison VS.
Rusiecki VK.
Sarabu R.
Sepinwall J.
Vincent GP.
Voss ME.
J. Med. Chem.
1993,
36:
3039
For example:
<A NAME="RG25510ST-2A">2a</A>
Wu Y.-D.
Gellman S.
Acc. Chem. Res.
2008,
41:
1231 ; and following articles in this issue, pp.
1233-1438
<A NAME="RG25510ST-2B">2b</A>
Penke B.
Tóth G.
Váradi G. In
Amino Acids, Peptides and Proteins
Vol.
36:
Davies JS.
RSC Publications;
Cambridge:
2007.
p.131 ; and earlier volumes in this series
For a selection of leading references,
see the following and references therein:
<A NAME="RG25510ST-3A">3a</A>
Chakraborty TK.
Rao KS.
Kiran MU.
Jagadeesh B.
Tetrahedron
Lett.
2008,
49:
2228
<A NAME="RG25510ST-3B">3b</A>
Lesma G.
Sacchetti A.
Silvani A.
Tetrahedron
Lett.
2008,
49:
1293
<A NAME="RG25510ST-3C">3c</A>
Lomlim L.
Einsiedel J.
Heinemann FW.
Meyer K.
Gmeiner P.
J.
Org. Chem.
2008,
73:
3608
<A NAME="RG25510ST-4A">4a</A>
Jones RCF.
Dickson J.
J. Peptide Sci.
2001,
7:
220
<A NAME="RG25510ST-4B">4b</A>
Jones RCF.
Dickson J.
J.
Peptide Sci.
2000,
6:
621
<A NAME="RG25510ST-4C">4c</A>
Jones RCF.
Gilbert IH.
Rees DC.
Crockett
AK.
Tetrahedron
1995,
51:
6315
<A NAME="RG25510ST-4D">4d</A>
Jones RCF.
Crockett AK.
Tetrahedron
Lett.
1993,
34:
7459
<A NAME="RG25510ST-5">5</A>
Jones RCF.
Hollis SJ.
Iley JN.
Tetrahedron: Asymmetry
2000,
11:
3273
<A NAME="RG25510ST-6">6</A>
Pillainayagam T.
PhD Thesis
Loughborough
University;
UK:
2005.
<A NAME="RG25510ST-7">7</A> See, for example:
Elguero J.
Goya P.
Jagerovic N.
Silva AMS.
Targets in Heterocyclic Systems
Vol.
6:
Attanasi OA.
Spinelli D.
Italian Society of
Chemistry;
Rome:
2002.
p.52
For leading references, see:
<A NAME="RG25510ST-8A">8a</A>
Jones RCF.
Choudhury AK.
Iley JN.
Loizou G.
Lumley C.
McKee V.
Synlett
2010,
654
<A NAME="RG25510ST-8B">8b</A>
Jones RCF.
Pillainayagam TA.
Synlett
2004,
2815
<A NAME="RG25510ST-9">9</A> For our exploration with azomethine
imines, see:
Jones
RCF.
Hollis SJ.
Iley JN.
ARKIVOC
2007,
(v):
152
<A NAME="RG25510ST-10">10</A> For a similar approach to 4,5-dihydroisoxazole
peptide mimetics, see:
Chung YJ.
Ryu EJ.
Keum G.
Kim
BH.
Bioorg. Med.
Chem.
1996,
4:
209
<A NAME="RG25510ST-11">11</A> Cf. for α-amino-oximes:
ref. 10. For α-amino semicarbazides:
Ito A.
Takahashi R.
Baba Y.
Chem. Pharm.
Bull.
1975,
23:
3081
<A NAME="RG25510ST-12">12</A>
Patel HV.
Vyas KA.
Pandey SP.
Fernandes PS.
Tetrahedron
1996,
52:
661
<A NAME="RG25510ST-13">13</A>
Bach K.
El-Seedi H.
Jensen H.
Nielsen H.
Thomsen I.
Torssell K.
Tetrahedron
1994,
50:
7543
<A NAME="RG25510ST-14">14</A>
Typical Procedure
for NCS Chlorination and Method 1
(
S
)-3-(1-
tert
-Butoxycarbonylaminoethyl)-2-phenyl-4,5-dihydro-1
H
-pyrazole-5-carboxylic
Acid Ethyl Ester (7)
To (S)-[1-methyl-2-(phenylhydrazono)ethyl]carbamic
acid tert-butyl ester (5,
1.24 g, 4.72 mmol) in EtOAc (15 mL) at 60 ˚C was
added NCS (0.71 g, 5.35 mmol, 1.1 equiv) and the mixture stirred
for 1 h. Ethyl propenoate (0.918 g, 1.0 mL, 9.16 mmol, 1.9 equiv),
KHCO3 (2.41 g, 23.97 mmol, 5.1 equiv) and a few drops
of H2O were added and the mixture stirred at 70 ˚C
for 20 h. The mixture was then filtered and the filtrate concentrated
under reduced pressure to give a dark orange oil, purified by column
chromatography on silica gel eluting with light PE-EtOAc
(7:1, v/v) to yield the title compound 7 (0.72
g, 41%) in an inseparable 1:1 mixture of diastereomers,
as an orange solid; mp 93-95 ˚C. IR (CHCl3): νmax = 3354
(NH), 1599 (C=N), 1708 (C=O), 1168 (CO), 750 (PhCH)
cm-¹. ¹H NMR (400
MHz, CDCl3): δ = 1.16
(3 H, t, J = 7.2
Hz, CH2CH
3), 1.35
(3 H, d, J = 7.0 Hz,
CH
3CH), 1.38 [9 H,
s, C(CH
3)3],
2.99 (1 H, dd, J = 7.2, 17.6
Hz, 4-CHH), 3.24 (1 H, dd, J = 12.4,
17.6 Hz, 4-CHH), 4.14 (2 H, q, J = 7.2 Hz,
CH
2CH3), 4.43 (1
H, m, CH3CH), 4.54, 4,57 (each
0.5 H, dd, J = 7.2,
12.4 Hz, CHCO2Et, diastereomers
1 and 2), 5.00 (1 H, br s, NH), 6.78 (1 H, m, ArH), 6.93 (2 H, m,
ArH), 7.18 (2 H, m, ArH). ¹³C NMR (100
MHz, CDCl3): δ = 14.2,
21.1 (CH3) 28.2 [(CH3)3C], 40.15
(4-CH2), 46.1 (5-CH), 61.7 (OCH2), 113.0 (PhCH), 113.0,
119.7, 119.8, 129.0 (4 × CH), 129.1 (2 × C),
145.3 (CN), 171.2, 171.5 (2 × CO). MS
(EI): m/z = 362 [MH+], 171
(12), 154 (24), 147 (19), 123 (21), 111 (28), 109 (35), 95 (54),
81 (54), 69 (85), 57 (100), 55 (99). HRMS (EI): m/z calcd
for C19H27N3O4: 362.2074 [MH+];
found 362.2073 [MH+]. Anal.
Calcd (%) for C19H27N3O4:
C, 63.1; H, 7.5; N, 11.6. Found: C, 62.6; H, 7.2; N, 11.8.
<A NAME="RG25510ST-15">15</A>
Sharp JT. In
Synthetic Applications of 1,3-Dipolar Cycloaddition
Chemistry Toward Heterocycles and Natural Products
Padwa A.
Pearson WH.
John Wiley and Sons;
Hoboken:
2003.
p.473
<A NAME="RG25510ST-16A">16a</A>
Molteni G.
Ponti A.
Orlandi M.
New J. Chem.
2002,
26:
1340
<A NAME="RG25510ST-16B">16b</A>
Broggini G.
Molteni G.
Orlandi M.
J.
Chem. Soc., Perkin Trans. 1
2000,
3742
<A NAME="RG25510ST-17A">17a</A> For
a review of silver salts in pyrazole synthesis, see:
Molteni G.
ARKIVOC
2007,
(ii):
224
<A NAME="RG25510ST-17B">17b</A>
De Benassuti L.
Garanti L.
Molteni G.
Tetrahedron
2004,
60:
4627
<A NAME="RG25510ST-18">18</A>
Zhang X.
Breslav M.
Grimm J.
Guan K.
Huang A.
Liu F.
Maryanoff CA.
Palmer D.
Patel M.
Qian Y.
Shaw C.
Sorgi K.
Stefanick S.
Xu D.
J. Org. Chem.
2002,
67:
9471
<A NAME="RG25510ST-19">19</A>
Sakamoto T.
Kikugawa Y.
Chem. Pharm. Bull.
1988,
36:
800
<A NAME="RG25510ST-20">20</A>
Cf. ref. 16a for a discussion on the
reduced rate of nitrile imine cycloadditions with electron-rich
dipolarophiles and/or electron-poor dipoles.
<A NAME="RG25510ST-21">21</A>
Crystal Data for
7
C19H27N3O4, M = 361.44,
monoclinic, a = 5.14990
(10), b = 11.4316
(4), c = 16.8254
(6) Å, β = 96.320
(2), U = 984.52
(5) ų, T = 120
(2) K, space group P21, graphite monochromated
Mo Kα radiation, λ = 0.71073 Å, Z = 2, D
c
= 1.219
g cm-³, F(000) = 388,
colourless, dimensions 0.36 × 0.09 × 0.04 mm³, µ = 0.086
mm-¹, 3.02 < θ < 28.19˚, 11290
reflections measured, 2363 unique reflections, R
int = 0.0376.
The structure was solved by direct methods and refined on F
². Friedel pairs
were merged due to the lack of any significant anomalous scattering. wR2 = 0.0833
(all data, 244 parameters); R1 = 0.0351 [2223
data with F
²
> 2σ(F
²
)]. Crystallographic
data (excluding structure factors) for the structures in this paper
have been deposited with the Cambridge Crystallographic Data Centre
as supplementary publication no. 787832. Copies of the data can
be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK [fax: +44 (1223)336033 or e-mail:
deposit@ccdc.cam.ac.uk).
For leading references, see:
<A NAME="RG25510ST-22A">22a</A>
Huck BR.
Fisk JD.
Gellman SH.
Org. Lett.
2000,
2:
2607
<A NAME="RG25510ST-22B">22b</A>
Fisk JD.
Powell DR.
Gellman SH.
J. Am. Chem. Soc.
2000,
122:
5443