Abstract
Direct asymmetric aldol reactions of aldehydes with ketones in
the presence of a catalytic amount of β-aminosulfonamide 2 and trifluoroacetic acid in brine results
in the formation of the corresponding anti -aldol
products in high yields with up to 96% enantiomeric excess.
The anti -aldol products obtained by using organocatalyst 2 have the opposite absolute configuration
to those obtained using the similar sulfonamide catalyst 1 , which was reported previously by us.
Key words
organocatalyst - aldol reaction - sulfonamide - brine - asymmetric
References and Notes
For selected reviews on organocatalysis,
see:
<A NAME="RU09410ST-1A">1a </A>
Dalko
PI.
Moisan L.
Angew. Chem.
Int. Ed.
2004,
43:
5138
<A NAME="RU09410ST-1B">1b </A>
Pellissier H.
Tetrahedron
2007,
63:
9267
<A NAME="RU09410ST-1C">1c </A>
Mukherjee S.
Yang JW.
Hoffmann S.
List B.
Chem. Rev.
2007,
107:
5471
<A NAME="RU09410ST-1D">1d </A>
Dondoni A.
Massi A.
Angew. Chem. Int. Ed.
2008,
47:
4638
<A NAME="RU09410ST-1E">1e </A>
Lattanzi A.
Chem. Commun.
2009,
1452
<A NAME="RU09410ST-1F">1f </A>
Liu X.
Lin L.
Feng X.
Chem. Commun.
2009,
6145
<A NAME="RU09410ST-2">2 </A>
Modern
Aldol Reactions
Vol. 1 and 2:
Mahrwald R.
Wiley-VCH;
Weinheim:
2004.
For selected reviews on organocatalysis
in water, see:
<A NAME="RU09410ST-3A">3a </A>
Gruttadauria M.
Giacalone F.
Noto R.
Adv.
Synth. Catal.
2009,
351:
33
<A NAME="RU09410ST-3B">3b </A>
Paradowska J.
Stodulski M.
Mlynarski J.
Angew.
Chem. Int. Ed.
2009,
48:
4288
<A NAME="RU09410ST-3C">3c </A>
Raj M.
Singh K.
Chem. Commun.
2009,
6687
For selected recent examples of organocatalyzed aldol reactions in
water, see:
<A NAME="RU09410ST-3D">3d </A>
An Y.-J.
Zhang Y.-X.
Wu Y.
Liu
Z.-M.
Pi C.
Tao J.-C.
Tetrahedron: Asymmetry
2010,
21:
688
<A NAME="RU09410ST-3E">3e </A>
Zhang S.-P.
Fu X.-K.
Fu S.-D.
Tetrahedron
Lett.
2009,
50:
1173
<A NAME="RU09410ST-3F">3f </A>
Zhou H.
Xie Y.
Ren L.
Wang K.
Adv. Synth. Catal.
2009,
351:
1284
<A NAME="RU09410ST-3G">3g </A>
Ma X.
Da C S.
Yi L.
Jia Y.-N.
Guo Q.-P.
Che L.-P.
Wu F.-C.
Wang J.-R.
Li W.-P.
Tetrahedron:
Asymmetry
2009,
20:
1419
<A NAME="RU09410ST-3H">3h </A>
Chimni SS.
Singh S.
Kumar A.
Tetrahedron: Asymmetry
2009,
20:
1722
<A NAME="RU09410ST-3I">3i </A>
Fu S.-D.
Fu X.-K.
Zhang S.-P.
Zou X.-C.
Wu X.-J.
Tetrahedron:
Asymmetry
2009,
20:
2390
<A NAME="RU09410ST-3J">3j </A>
Vishnumaya MR.
Singh VK.
J.
Org. Chem.
2009,
74:
4289
<A NAME="RU09410ST-3K">3k </A>
Nisco MD.
Pedatella S.
Ullah H.
Zaidi JH.
Naviglio D.
Ozdamar O.
Caputo R.
J. Org. Chem.
2009,
74:
9562
<A NAME="RU09410ST-3L">3l </A>
Vishnumaya MR.
Singh VK.
J.
Org. Chem.
2009,
74:
4289
<A NAME="RU09410ST-3M">3m </A>
Mase N.
Noshiro N.
Mokuya A.
Takabe K.
Adv. Synth. Catal.
2009,
351:
2791
<A NAME="RU09410ST-3N">3n </A>
Tea Y.-C.
Lee PP.
Synth. Commun.
2009,
39:
3081
<A NAME="RU09410ST-3O">3o </A>
Jia Y.-N.
Wu F.-C.
Ma X.
Zhu G.-J.
Da C S.
Tetrahedron
Lett.
2009,
50:
3059
<A NAME="RU09410ST-3P">3p </A>
Ramasastry SSV.
Albertshofer K.
Utsumi N.
Barbas CF.
Org.
Lett.
2008,
10:
1621
<A NAME="RU09410ST-3Q">3q </A>
Zhu M.-K.
Xu X.-Y.
Gong L.-Z.
Adv. Synth.
Catal.
2008,
350:
1390
<A NAME="RU09410ST-3R">3r </A>
Zu L.
Xie H.
Li H.
Wang J.
Wang W.
Org. Lett.
2008,
10:
1211
<A NAME="RU09410ST-3S">3s </A>
Gandhi S.
Singh VK.
J. Org. Chem.
2008,
73:
9411
<A NAME="RU09410ST-3T">3t </A>
Zhao
J.-F.
He L.
Jiang J.
Tang Z.
Cun L.-F.
Gong L.-Z.
Tetrahedron
Lett.
2008,
49:
3372
<A NAME="RU09410ST-3U">3u </A>
Huang W.-P.
Chen J.-R.
Li X.-Y.
Cao Y.-J.
Xiao W.-J.
Can.
J. Chem.
2007,
85:
208
<A NAME="RU09410ST-3V">3v </A>
Huang J.
Zhang X.
Armstrong DW.
Angew. Chem.
Int. Ed.
2007,
46:
9073
<A NAME="RU09410ST-3W">3w </A>
Gryko D.
Saletra WJ.
Org. Biomol. Chem.
2007,
5:
2148
<A NAME="RU09410ST-3X">3x </A>
Hayashi Y.
Sumiya T.
Takahashi J.
Gotoh H.
Urushima T.
Shoji M.
Angew. Chem. Int. Ed.
2006,
45:
958
<A NAME="RU09410ST-3Y">3y </A>
Mase N.
Nakai Y.
Ohara N.
Yoda H.
Takabe K.
Tanaka F.
Barbas CF.
J.
Am. Chem. Soc.
2006,
128:
734
<A NAME="RU09410ST-4">4 </A>
Nakayama K.
Maruoka K.
J. Am. Chem. Soc.
2008,
130:
17666
<A NAME="RU09410ST-5">5 </A>
Miura T.
Yasaku Y.
Koyata N.
Murakami Y.
Imai N.
Tetrahedron
Lett.
2009,
50:
2632
<A NAME="RU09410ST-6">6 </A>
Miura T.
Imai K.
Ina M.
Tada N.
Imai N.
Itoh A.
Org. Lett.
2010,
12:
1620
<A NAME="RU09410ST-7">7 </A>
Imai N.
Nokami J.
Nomura T.
Ninomiya Y.
Shinobe A.
Matsushiro S.
Bull. Okayama Univ. Sci.
2002,
47
<A NAME="RU09410ST-8">8 </A>
A typical procedure for the aldol condensation
using 2 and 6a is
as follows: To a colorless suspension of p -nitro-benzaldehyde
(6a ; 90.7 mg, 0.600 mmol) and the organo-catalyst 2 (33.9 mg, 0.120 mmol) in brine (1.2 mL),
were added cyclohexanone (0.62 mL, 6.00 mmol) and TFA (2.2 µL,
0.030 mmol) at r.t. The reaction mixture was stirred at r.t. for
36 h, and extracted three times with EtOAc. The organic layers were
combined, washed with brine, dried over anhydrous MgSO4 ,
and evaporated. The residue was purified by flash column chromatography
on silica gel (toluene-EtOAc, 4:1) to afford pure 8a (121.3 mg, 81%) as a colorless solid.
<A NAME="RU09410ST-9A">9a </A>
Bassan A.
Zou W.
Reues E.
Himo F.
Córdova A.
Angew. Chem. Int. Ed.
2005,
44:
7028
<A NAME="RU09410ST-9B">9b </A>
Dziedzic P.
Zou W.
Háfren J.
Córdova A.
Org. Biomol. Chem.
2006,
4:
38
<A NAME="RU09410ST-10">10 </A>
Mase N.
Watanabe K.
Yoda H.
Takabe K.
Tanaka F.
Barbas CF.
J. Am. Chem. Soc.
2006,
128:
4966
<A NAME="RU09410ST-11">11 </A> We assume that the aldol reactions
are accelerated by the use of brine (salting-out effect),¹0 see:
Maya V.
Singh VK.
Org.
Lett.
2007,
9:
1117