References and Notes
<A NAME="RD00511ST-1">1</A>
Postdoctoral Fellow of the Research
Foundation-Flanders (FWO).
<A NAME="RD00511ST-2A">2a</A>
Lu P.
Tetrahedron
2010,
66:
2549
<A NAME="RD00511ST-2B">2b</A>
Abbaspour Tehrani K.
De Kimpe N.
Curr.
Org. Chem.
2009,
13:
854
<A NAME="RD00511ST-2C">2c</A>
Padwa A. In Comprehensive Heterocyclic Chemistry III
Vol.
1:
Katritzky AR.
Ramsden CA.
Scriven EFV.
Taylor RJK.
Elsevier;
Oxford:
2008.
p.1-104
<A NAME="RD00511ST-2D">2d</A>
Aziridines and
Epoxides in Organic Synthesis
Yudin AK.
Wiley-VCH;
Weinheim:
2006.
<A NAME="RD00511ST-2E">2e</A>
Hu XE.
Tetrahedron
2004,
60:
2701
<A NAME="RD00511ST-2F">2f</A>
McCoull W.
Davis FA.
Synthesis
2000,
1347
<A NAME="RD00511ST-2G">2g</A>
Tanner D.
Angew.
Chem., Int. Ed. Engl.
1994,
33:
599
<A NAME="RD00511ST-2H">2h</A>
Sweeney JB.
Chem. Soc. Rev.
2002,
31:
247
For some selected publications on
the influence of the aziridine substitution pattern on C-N
and C-C bond cleavage, see:
<A NAME="RD00511ST-3A">3a</A>
Paasche A.
Arnone M.
Fink RF.
Schirmeister T.
Engels B.
J.
Org. Chem.
2009,
74:
5244
<A NAME="RD00511ST-3B">3b</A>
Banks HD.
J. Org. Chem.
2010,
75:
2510
<A NAME="RD00511ST-3C">3c</A>
Dauban P.
Malik G.
Angew. Chem. Int. Ed.
2009,
48:
9026
<A NAME="RD00511ST-3D">3d</A>
Gaebert C.
Mattay J.
Tetrahedron
1997,
53:
14297
<A NAME="RD00511ST-3E">3e</A>
Colpaert F.
Mangelinckx S.
Giubellina N.
De Kimpe N.
Tetrahedron
2011,
67:
1258
<A NAME="RD00511ST-4">4</A>
Joule JA.
Mills K.
Heterocyclic
Chemistry
4th ed.:
Blackwell Science;
Oxford:
2000.
p.237
<A NAME="RD00511ST-5">5</A> For a recent review on the asymmetric
synthesis of aziridines, see:
Pellissier H.
Tetrahedron
2010,
66:
1509
<A NAME="RD00511ST-6">6</A>
Ohno H. In Aziridines and Epoxides in Organic Synthesis
Yudin AK.
Wiley-VCH;
Weinheim:
2006.
<A NAME="RD00511ST-7">7</A>
Olofsson B.
Khamrai U.
Somfai P.
Org.
Lett.
2000,
2:
4087
<A NAME="RD00511ST-8">8</A>
Aoyama H.
Mimura N.
Ohno H.
Ishii K.
Toda A.
Tamamura H.
Otaka A.
Fujii N.
Ibuka T.
Tetrahedron Lett.
1997,
38:
7383
<A NAME="RD00511ST-9">9</A>
Ley SV.
Middleton B.
Chem. Commun.
1998,
1995
<A NAME="RD00511ST-10A">10a</A>
Åhman J.
Jarevång T.
Somfai P.
J. Org. Chem.
1996,
61:
8148
<A NAME="RD00511ST-10B">10b</A>
Åhman J.
Somfai P.
J. Am. Chem.
Soc.
1994,
116:
9781
<A NAME="RD00511ST-11A">11a</A>
Hassner A.
Chau W.
Tetrahedron
Lett.
1982,
23:
1989
<A NAME="RD00511ST-11B">11b</A>
Lindström UL.
Somfai P.
Chem.
Eur. J.
2001,
7:
94
<A NAME="RD00511ST-11C">11c</A>
Fantauzzi S.
Gallo E.
Caselli A.
Piangiolino C.
Ragaini F.
Re N.
Cenini S.
Chem.
Eur. J.
2009,
15:
1241
<A NAME="RD00511ST-12A">12a</A>
Atkinson RS.
Rees CW.
Chem. Commun.
1967,
1232
<A NAME="RD00511ST-12B">12b</A>
Gilchrist TL.
Rees CW.
Stanton E.
J. Chem. Soc. C
1971,
3036
<A NAME="RD00511ST-12C">12c</A>
Hudlicky T.
Frazier JO.
Seoane G.
Tiedje M.
Seoane A.
Kwart LD.
Beal C.
J.
Am. Chem. Soc.
1986,
108:
3755
<A NAME="RD00511ST-12D">12d</A>
Hudlicky T.
Seoane G.
Lovelace TC.
J.
Org. Chem.
1988,
53:
2094
<A NAME="RD00511ST-12E">12e</A>
Hudlicky T.
Sinai-Zingde G.
Seoane G.
Synth. Commun.
1987,
17:
1155
<A NAME="RD00511ST-12F">12f</A>
Hirner S.
Somfai P.
Synlett
2005,
3099
<A NAME="RD00511ST-12G">12g</A>
Borel D.
Gelas-Mialhe Y.
Vessière R.
Can.
J. Org. Chem.
1976,
54:
1590
<A NAME="RD00511ST-12H">12h</A>
Knight JG.
Muldowney MP.
Synlett
1995,
949
<A NAME="RD00511ST-13A">13a</A>
Brichacek M.
Lee D.
Njardarson JT.
Org. Lett.
2008,
10:
5023
<A NAME="RD00511ST-13B">13b</A>
Li A.-H.
Dai L.-X.
Hou X.-L.
Chen M.-B.
J. Org. Chem.
1996,
61:
4641
<A NAME="RD00511ST-13C">13c</A>
Hortmann AG.
Koo
J.-Y.
J.
Org. Chem.
1974,
39:
3781
<A NAME="RD00511ST-14A">14a</A>
Scheiner P.
J. Org. Chem.
1967,
32:
2628
<A NAME="RD00511ST-14B">14b</A>
Logothetis AL.
J. Am. Chem. Soc.
1965,
87:
749
<A NAME="RD00511ST-14C">14c</A>
Hudlicky T.
Reed JW. In Comprehensive
Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.899-970
<A NAME="RD00511ST-14D">14d</A>
Somfai P.
Åhman J. In Targets
in Heterocyclic Systems
Italian Society of Chemistry;
Rome:
1999.
p.341
<A NAME="RD00511ST-15">15</A>
Mente PG.
Heine HW.
J. Org. Chem.
1971,
36:
3076
<A NAME="RD00511ST-16A">16a</A>
Lee Y.
Huang H.
Sayre LM.
J. Am. Chem. Soc.
1996,
118:
7241
<A NAME="RD00511ST-16B">16b</A>
Wang Y.-X.
Mabic S.
Castagnoli N.
Bioorg.
Med. Chem.
1998,
6:
143
<A NAME="RD00511ST-16C">16c</A>
Williams CH.
Lawson J.
Biochem.
J.
1998,
336:
63
<A NAME="RD00511ST-16D">16d</A>
Lee Y.
Ling
K.-Q.
Lu X.
Silverman RB.
Shepard EM.
Dooley DM.
Sayre LM.
J. Am. Chem. Soc.
2002,
124:
12135
<A NAME="RD00511ST-16E">16e</A>
Zhang Y.
Ran C.
Zhou G.
Sayre LM.
Bioorg. Med. Chem.
2007,
15:
1868
<A NAME="RD00511ST-16F">16f</A>
Pretorius A.
Ogunrombi MO.
Terre’Blanche G.
Castagnoli N.
Bergh JJ.
Petzer
JP.
Bioorg. Med. Chem.
2008,
16:
8813
<A NAME="RD00511ST-17">17</A>
Ogunrombi MO.
Malan SF.
Terre’Blanche G.
Castagnoli N.
Bergh JJ.
Petzer JP.
Bioorg. Med. Chem.
2008,
16:
2463
<A NAME="RD00511ST-18A">18a</A>
Bujard M.
Briot A.
Gouverneur V.
Mioskowski C.
Tetrahedron
Lett.
1999,
40:
8785
<A NAME="RD00511ST-18B">18b</A>
Dondas HA.
Balme G.
Clique B.
Grigg R.
Hodgeson A.
Morris J.
Sridharan V.
Tetrahedron
Lett.
2001,
42:
8673
<A NAME="RD00511ST-18C">18c</A>
Dondas HA.
Clique B.
Cetinkaya B.
Grigg R.
Kilner C.
Morris J.
Sridharan V.
Tetrahedron
2005,
61:
10652
<A NAME="RD00511ST-18D">18d</A>
Verendel JJ.
Zhou T.
Li J.-Q.
Paptchikhine A.
Lebedev O.
Andersson PG.
J. Am. Chem. Soc.
2010,
132:
8880
<A NAME="RD00511ST-19">19</A>
Hercouet A.
Neu A.
Peyronel J.-F.
Carboni B.
Synlett
2002,
829
<A NAME="RD00511ST-20">20</A>
Chang M.-Y.
Pai C.-L.
Kung Y.-H.
Tetrahedron
Lett.
2006,
47:
855
<A NAME="RD00511ST-21">21</A>
Nicolaou KC.
Krasovskiy A.
Majumder U.
Trépanier VE.
Chen DY.-K.
J. Am. Chem. Soc.
2009,
131:
3690
<A NAME="RD00511ST-22A">22a</A>
Davis FA.
Reddy RE.
Szewczyk JM.
Reddy GV.
Portonovo PS.
Zhang H.
Fanelli D.
Reddy RT.
Zhou P.
Caroll PJ.
J. Org. Chem.
1997,
62:
2555
<A NAME="RD00511ST-22B">22b</A>
Zhou P.
Chen B.-C.
Davis FA.
Tetrahedron
2004,
60:
8003 ; and references cited therein
<A NAME="RD00511ST-23A">23a</A>
Cohan DA.
Lui G.
Ellman JA.
Tetrahedron
1999,
55:
8883
<A NAME="RD00511ST-23B">23b</A>
Ellman JA.
Owens TD.
Tang TP.
Acc. Chem. Res.
2002,
35:
984
<A NAME="RD00511ST-23C">23c</A>
Ellman JA.
Pure Appl. Chem.
2003,
75:
39
<A NAME="RD00511ST-23D">23d</A>
Robak MT.
Herbage MA.
Ellman JA.
Chem. Rev.
2010,
110:
3600
<A NAME="RD00511ST-24A">24a</A>
Ferreira F.
Botuha C.
Chemla F.
Pérez-Luna A.
Chem.
Soc. Rev.
2009,
38:
1162
<A NAME="RD00511ST-24B">24b</A>
Morton D.
Stockman RA.
Tetrahedron
2006,
62:
8869
<A NAME="RD00511ST-25A">25a</A>
Denolf B.
Mangelinckx S.
Törnroos KW.
De Kimpe N.
Org. Lett.
2006,
8:
3129
<A NAME="RD00511ST-25B">25b</A>
Denolf B.
Mangelinckx S.
Törnroos KW.
De Kimpe N.
Org.
Lett.
2007,
9:
187
<A NAME="RD00511ST-25C">25c</A>
Denolf B.
Leemans E.
De Kimpe N.
J.
Org. Chem.
2007,
72:
3211
<A NAME="RD00511ST-25D">25d</A>
Malkov AV.
Stončius S.
Kočovský P.
Angew. Chem. Int. Ed.
2007,
46:
3722
<A NAME="RD00511ST-25E">25e</A>
Denolf B.
Leemans E.
De Kimpe N.
J.
Org. Chem.
2008,
73:
5662
<A NAME="RD00511ST-25F">25f</A>
Hodgson DM.
Kloesges J.
Evans B.
Org. Lett.
2008,
10:
2781
<A NAME="RD00511ST-25G">25g</A>
Chen Q.
Li J.
Yuan C.
Synthesis
2008,
2986
<A NAME="RD00511ST-25H">25h</A>
Leemans E.
Mangelinckx S.
De Kimpe N.
Synlett
2009,
1265
<A NAME="RD00511ST-25I">25i</A>
Hodgson DM.
Kloesges J.
Evans B.
Synthesis
2009,
1923
<A NAME="RD00511ST-25J">25j</A>
Colpaert F.
Mangelinckx S.
Leemans E.
De Kimpe N.
Org. Biomol. Chem.
2010,
8:
3251
<A NAME="RD00511ST-26A">26a</A>
De Kimpe N.
Verhé R.
De Buyck L.
Schamp N.
Org. Prep. Proced. Int.
1980,
12:
49
<A NAME="RD00511ST-26B">26b</A>
De Kimpe N.
Verhé R.
De Buyck L.
Schamp N.
J. Org. Chem.
1980,
45:
5319
<A NAME="RD00511ST-26C">26c</A>
De Kimpe N.
Sulmon P.
Verhé R.
De Buyck L.
Schamp N.
J. Org. Chem.
1983,
48:
4320
<A NAME="RD00511ST-27A">27a</A>
Morton D.
Pearson D.
Field RA.
Stockman RA.
Org. Lett.
2004,
6:
2377
<A NAME="RD00511ST-27B">27b</A>
Chigboh K.
Morton D.
Nadin A.
Stockman RA.
Tetrahedron Lett.
2008,
49:
4768
<A NAME="RD00511ST-27C">27c</A>
Morton D.
Pearson D.
Field RA.
Stockman RA.
Chem. Commun.
2006,
1833
<A NAME="RD00511ST-28">28</A>
Zheng J.-C.
Liao W.-W.
Sun X.-X.
Sun X.-L.
Tang Y.
Dai L.-X.
Deng J.-G.
Org.
Lett.
2005,
7:
5789
<A NAME="RD00511ST-29">29</A>
Kokotos C.
Aggarwal VK.
Org. Lett.
2007,
9:
2099
<A NAME="RD00511ST-30">30</A>
Colyer JT.
Andersen NG.
Tedrow JS.
Soukup TS.
Faul MM.
J. Org. Chem.
2006,
71:
6859
<A NAME="RD00511ST-31A">31a</A>
Liu Z.-J.
Mei Y.-Q.
Liu J.-T.
Tetrahedron
2006,
63:
855
<A NAME="RD00511ST-31B">31b</A>
Sun X.-W.
Xu M.-H.
Lin G.-Q.
Org.
Lett.
2006,
8:
4979
<A NAME="RD00511ST-32">32</A>
Synthesis of (
R
S
)-
N
-
tert
-Butanesulfinyl 3-Phenyl-3-pyrroline (4a)
α-Chloro imine 5a (0.91 mmol)
was dissolved in dry CH2Cl2 (10 mL), and the
stirred solution was cooled to -78 ˚C.
Two equiv of vinylmagnesium bromide (1 M solution in THF, 1.82 mL,
1.82 mmol) were added to the solution, and the reaction mixture
was allowed to stir for 2 h at -78 ˚C
before being left at -40 ˚C for 4 h.
The reaction mixture was quenched at this temperature by the addition
of aq NH4Cl (5 mL) and immediately extracted with CH2Cl2 (2 × 10
mL). The organic layers were dried (MgSO4, containing
little of K2CO3), filtered, and concentrated.
The mixture was purified by means of recrystallization from Et2O
to afford the pyrroline 4a in 91% yield.
Colorless crystals; mp 55.6 ± 0.5 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.50 (9 H,
s), 3.39 (1 H, dddd, J = 15.8,
5.5, 4.1, 1.4 Hz), 3.85 (1 H, dddd, J = 15.8,
4.3, 3.3, 3.3 Hz), 4.25 (1 H, dddd, J = 18.4,
3.3, 1.7, 1.7 Hz), 4.40 (1 H, dddd, J = 18.4,
4.4, 4.4, 1.7 Hz), 5.99-6.03 (1 H, m), 7.28-7.37
(5 H, m). ¹³C NMR (75 MHz, CDCl3): δ = 22.1,
36.9, 48.3, 55.4, 112.6, 125.4, 128.1, 128.6, 135.3, 139.1. MS
(ES, pos. mode): m/z (%) = 194 (100) [M - t-Bu + 2H]+.
IR (KBr): νmax = 1042, 1085, 1364, 1453,
2962 cm-¹. Anal. Calcd for C14H19NOS:
C, 67.43; H, 7.68; N, 5.62. Found: C, 67.17; H, 7.84; N, 5.33. [α]D -28.3 (c 1.03, CH2Cl2).
<A NAME="RD00511ST-33">33</A>
(
R
s
,
S
)-1-(
tert
-Butanesulfinyl)-2-isopropenyl-2-phenylaziridine [(
R
s
,S
)-6]
Yellow crystals; mp 54.2 ± 0.5 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.21 (9 H,
s), 1.65 (3 H, s), 2.11 (1 H, s), 3.23 (1 H, s), 4.95 (1 H, s),
5.14 (1 H, s), 7.26-7.47 (5 H, m). ¹³C NMR
(75 MHz, CDCl3): δ = 19.8, 22.8, 30.3,
51.1, 57.4, 112.9, 128.3, 128.5, 129.7, 134.9, 145.4. MS (ES, pos. mode): m/z (%) = 264
(100) [M + H]+. IR
(ATR): νmax = 696, 1074, 1447, 2961
cm-¹. Anal. Calcd for C15H21NOS:
C, 68.40; H, 8.04; N, 5.32. Found: C, 68.04; H, 8.24; N, 5.12. R
f
= 0.28
(PE-EtOAc = 3:1). [α]D -394.7
(c 1.03, CH2Cl2).
<A NAME="RD00511ST-34">34</A>
(
R
S
)-
N
-
tert
-Butanesulfinyl 2-Methyl-4-phenyl-3-pyrroline
(9)
Spectroscopic data of the major diastereomer obtained
from the mixture of diastereomers 9 (dr
86:14). Brown oil. ¹H NMR (300 MHz, CDCl3): δ = 1.51
(9 H, s), 1.53 (3 H, d, J = 6.6
Hz), 3.88-3.98 (1 H, m), 4.20 (1 H, ddd, J = 18.4, 3.0,
1.4 Hz), 4.39 (1 H, ddd, J = 18.4,
4.1, 1.9 Hz), 5.70-5.72 (1 H, m), 7.27-7.37 (5
H, m). ¹³C NMR (75 MHz, CDCl3):
δ = 19.2,
24.5, 42.9, 46.2, 60.9, 122.1, 125.7, 127.9, 128.6, 139.3, 139.8.
MS (ES, pos. mode): m/z (%) = 264
(100)
[M + H]+.
IR (ATR): νmax = 694, 1050, 1447, 2926
cm-¹. Anal. Calcd for C15H21NOS:
C, 68.40; H, 8.04; N, 5.32. Found: C, 68.69; H, 7.99; N, 5.49.
<A NAME="RD00511ST-35A">35a</A>
Campi EM.
Jackson WR.
J. Organomet. Chem.
1996,
523:
205
<A NAME="RD00511ST-35B">35b</A>
Tomooka K.
Nakazaki A.
Nakai T.
J.
Am. Chem. Soc.
2000,
122:
408
<A NAME="RD00511ST-36">36</A>
Dieter RK.
Yu H.
Org. Lett.
2001,
3:
3855
<A NAME="RD00511ST-37">37</A>
Synthesis of (
R
S
)-
N
-(
tert
-Butanesulfinyl) 3-(4-Methoxy-phenyl)pyrrole
(13e)
2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (0.042
g, 0.18 mmol) was dissolved in 1,4-dioxane (10 mL) and the mixture
added dropwise to a solution of (R
S
)-N-(tert-butanesulfinyl)-3-(4-methoxyphenyl)-3-pyrroline
(4e, 0.057 g, 0.20 mmol) in 1,4-dioxane
(10 mL). After stirring for 16 h at r.t., the reaction mixture was
quenched by the addition of a 10% solution of NaHSO3 (5
mL) and immediately extracted with EtOAc (2 × 10
mL). The organic layers were dried (MgSO4), filtered,
and concentrated. The compound was purified by means of column chromatography
to afford (R
S
)-N-(tert-butanesulfinyl)
3-(4-methoxyphenyl)pyrrole (13e, 0.049
g) in 87% yield; black crystals; mp 133.6 ± 0.5 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.45 (9 H,
s), 3.82 (3 H, s), 5.86 (1 H, dd, J = 9.9,
1.7 Hz), 6.89-6.93 (2 H, m), 7.22-7.26 (2 H, m),
7.53 (1 H, dd, J = 9.9,
2.2 Hz), 7.68-7.70 (1 H, m). ¹³C
NMR (75 MHz, CDCl3): δ = 23.2, 55.4, 62.1,
88.8, 113.8, 114.3, 126.6, 131.4, 139.8, 144.9, 158.2. MS (ES, pos.
mode): m/z (%) = 278
(100) [M + H]+. IR (ATR): νmax = 1187,
1367, 1591, 2928 cm-¹. Anal. Calcd
for C15H19NO2S: C, 64.95; H, 6.90;
N, 5.05. Found: C, 65.07; H, 6.64; N, 4.89. R
f
= 0.29
(PE-EtOAc = 3:1). [α]D = 28.7
(c 0.09, CH2Cl2).
<A NAME="RD00511ST-38A">38a</A>
Donohoe TJ.
Orr AJ.
Gosby K.
Bingham M.
Eur. J.
Org. Chem.
2005,
1969
<A NAME="RD00511ST-38B">38b</A>
Beck EM.
Hatley R.
Gaunt MJ.
Angew. Chem. Int. Ed.
2008,
47:
3004
<A NAME="RD00511ST-38C">38c</A>
Wang X.
Lane BS.
Sames D.
J.
Am. Chem. Soc.
2005,
127:
4996
<A NAME="RD00511ST-38D">38d</A>
Dohi T.
Morimoto K.
Takenaga N.
Goto A.
Maruyama A.
Kiyono Y.
Tohma H.
Kita Y.
J. Org. Chem.
2007,
72:
109
<A NAME="RD00511ST-38E">38e</A>
Balasubramanian T.
Strachan J.-P.
Boyle PD.
Lindsey JS.
J.
Org. Chem.
2000,
65:
7919
<A NAME="RD00511ST-38F">38f</A>
Kim H.-J.
Lindsey JS.
J. Org. Chem.
2005,
70:
5475
<A NAME="RD00511ST-39A">39a</A>
Aponick A.
Li C.-Y.
Malinge J.
Marques EF.
Org. Lett.
2009,
11:
4624
<A NAME="RD00511ST-39B">39b</A>
Join B.
Yamamoto T.
Itami K.
Angew.
Chem. Int. Ed.
2009,
48:
3644
<A NAME="RD00511ST-39C">39c</A>
Du X.
Xie X.
Liu Y.
J.
Org. Chem.
2010,
75:
510
<A NAME="RD00511ST-39D">39d</A>
Wen J.
Qin S.
Ma L.-F.
Dong L.
Zhang J.
Liu S.-S.
Duan Y.-S.
Chen S.-Y.
Hu C.-W.
Yu X.-Q.
Org.
Lett.
2010,
12:
2694
<A NAME="RD00511ST-40">40</A>
Dondas HA.
De Kimpe N.
Tetrahedron Lett.
2005,
46:
4179
<A NAME="RD00511ST-41">41</A>
Synthesis of 3,4-Dibromo-3-phenylpyrrolidine
(14)
A solution of (R
S
)-N-(tert-butanesulfinyl)-3-phenyl-3-pyrroline
(4a, 0.1 g, 0.40 mmol) in dry CH2Cl2 (10
mL) was cooled to 0 ˚C and Br2 (1.05
equiv, 0.023 mL, 0.42 mmol) was added dropwise. After stirring for
1 h, Et3N (1 equiv, 0.06 mL, 0.40 mmol) was added, and
the reaction mixture was allowed to stir for another 30 min at r.t.
H2O (10 mL) was added, and the reaction mixture was immediately extracted
with CH2Cl2 (2 × 10
mL). The combined organic layers were dried (MgSO4),
filtered, and concentrated. The compound was purified by means of
column chromatography (R
f
= 0.18;
PE-EtOAc = 3:1) to afford 3,4-dibromo-3-phenylpyrrolidine
(14, 0.04 g) in 33% yield. Light
brown oil. ¹H NMR (300 MHz, CDCl3): δ = 3.73
(1 H, dd, J = 14.9,
3.3 Hz), 3.91-3.99 (1 H, m), 4.35 (1 H, dd, J = 15.1,
4.1 Hz), 4.62 (1 H, dd, J = 15.4,
11.6 Hz), 5.11-5.23 (2 H, m), 7.38-7.48 (5 H,
m). ¹³C NMR (75
MHz, CDCl3): δ = 49.9, 50.8, 53.0,
66.3, 126.2, 129.1, 129.6, 140.0. IR (ATR): νmax = 1156,
1337, 2359, 3271 cm-¹. Anal. Calcd
for C10H11Br2N: C, 39.38; H, 3.64;
N, 4.59. Found: C, 39.03; H, 3.88; N, 4.21.
<A NAME="RD00511ST-42">42</A>
Gajda T.
Zwierzak A.
Liebigs Ann. Chem.
1986,
992