Abstract
The N ,N ′-dioxide-Ni(II)
complex has been developed for the asymmetric Mukaiyama aldol reaction
between glyoxal derivatives and enolsilane which produced the 2-hydroxy-1,4-dicarbonyl
compounds in moderate to high yields (up to 95%) with excellent
enantioselectivities (up to 95% ee). Based on the configuration
of the product and X-ray structure of the catalyst, a possible transition
state was proposed to explain the mechanism of the reaction.
Key words
asymmetric catalysis -
N ,N ′-dioxides complex - nickel - Mukaiyama aldol reaction - glyoxal derivatives
References and Notes
For reviews, see:
<A NAME="RW31110ST-1A">1a </A>
Gröger H.
Vogl EM.
Shibasaki M.
Chem. Eur. J.
1998,
4:
1137
<A NAME="RW31110ST-1B">1b </A>
Nelson SG.
Tetrahedron: Asymmetry
1998,
9:
357
<A NAME="RW31110ST-1C">1c </A>
Denmark SE.
Stavenger
RA.
Acc.
Chem. Res.
2000,
33:
432
<A NAME="RW31110ST-1D">1d </A>
Palomo C.
Oiarbide M.
García JM.
Chem. Eur. J.
2002,
8:
36
<A NAME="RW31110ST-1E">1e </A>
Schetter B.
Mahrwald R.
Angew. Chem. Int. Ed.
2006,
45:
7506
<A NAME="RW31110ST-1F">1f </A>
Adachi S.
Harada T.
Eur. J. Org. Chem.
2009,
3661
<A NAME="RW31110ST-1G">1g </A>
Geary LM.
Hultin PG.
Tetrahedron: Asymmetry
2009,
20:
131
<A NAME="RW31110ST-2">2 </A>
Kobayashi S.
Fujishita Y.
Mukaiyama T.
Chem.
Lett.
1990,
1455
For selected examples, see:
<A NAME="RW31110ST-3A">3a </A>
Furuta K.
Maruyama T.
Yamamoto H.
J.
Am. Chem. Soc.
1991,
113:
1041
<A NAME="RW31110ST-3B">3b </A>
Carreira EM.
Singer RA.
Lee W.
J. Am. Chem. Soc.
1994,
116:
8837
<A NAME="RW31110ST-3C">3c </A>
Mikami K.
Matsukawa S.
J. Am. Chem. Soc.
1994,
116:
4077
<A NAME="RW31110ST-3D">3d </A>
Keck GE.
Krishnamurthy D.
J.
Am. Chem. Soc.
1995,
117:
2363
<A NAME="RW31110ST-3E">3e </A>
Krüger J.
Carreira EM.
J.
Am. Chem. Soc.
1998,
120:
837
<A NAME="RW31110ST-3F">3f </A>
Evans DA.
Kozlowski MC.
Murry JA.
Burgey CS.
Campos KR.
Connell BT.
Staples RJ.
J.
Am. Chem. Soc.
1999,
121:
669
<A NAME="RW31110ST-3G">3g </A>
Yamashita Y.
Ishitani H.
Shimizu H.
Kobayashi S.
J. Am. Chem. Soc.
2002,
124:
3292
<A NAME="RW31110ST-3H">3h </A>
Le JC.-D.
Pagenkopf BL.
Org. Lett.
2004,
6:
4097
<A NAME="RW31110ST-3I">3i </A>
Oisaki K.
Zhao D.
Kanai M.
Shibasaki M.
J. Am. Chem. Soc.
2006,
128:
7164
<A NAME="RW31110ST-3J">3j </A>
Fu F.
Teo YC.
Loh TP.
Tetrahedron
Lett.
2006,
47:
4267
<A NAME="RW31110ST-3K">3k </A>
Kiyooka S.
Matsumoto S.
Shibata T.
Shinozaki K.
Tetrahedron
2010,
66:
1806 ; and references therein
For selected examples, see:
<A NAME="RW31110ST-4A">4a </A>
Denmark SE.
Fan Y.
J.
Am. Chem. Soc.
2002,
124:
4233
<A NAME="RW31110ST-4B">4b </A>
Denmark SE.
Wynn T.
Beutner GL.
J. Am. Chem. Soc.
2002,
124:
13405
<A NAME="RW31110ST-4C">4c </A>
Zhuang W.
Poulsen TB.
Jørgensen KA.
Org. Biomol. Chem.
2005,
3:
3284
<A NAME="RW31110ST-4D">4d </A>
McGilvra JD.
Unni AK.
Modi K.
Rawal VH.
Angew.
Chem. Int. Ed.
2006,
45:
6130
<A NAME="RW31110ST-4E">4e </A>
Adachi S.
Harada T.
Org. Lett.
2008,
10:
4999
<A NAME="RW31110ST-4F">4f </A>
Gondi VB.
Hagihara K.
Rawal VH.
Angew. Chem. Int. Ed.
2009,
48:
776
<A NAME="RW31110ST-4G">4g </A>
García-García P.
Lay F.
García-García P.
Rabalakos C.
List B.
Angew. Chem. Int. Ed.
2009,
48:
4363
<A NAME="RW31110ST-4H">4h </A>
Cheon CH.
Yamamoto H.
Org. Lett.
2010,
12:
2476 ; and references therein
<A NAME="RW31110ST-5A">5a </A>
Evans DA.
MacMillan DWC.
Campos KR.
J.
Am. Chem. Soc.
1997,
119:
10859
<A NAME="RW31110ST-5B">5b </A>
Evans DA.
Burgey CS.
Kozlowski MC.
Tregay SW.
J.
Am. Chem. Soc.
1999,
121:
686
<A NAME="RW31110ST-5C">5c </A>
Evans DA.
Masse CE.
Wu J.
Org. Lett.
2002,
4:
3375
<A NAME="RW31110ST-5D">5d </A>
Langner M.
Bolm C.
Angew. Chem. Int. Ed.
2004,
43:
5984
<A NAME="RW31110ST-5E">5e </A>
Akullian LC.
Snapper ML.
Hoveyda AH.
J. Am. Chem. Soc.
2006,
128:
6532
<A NAME="RW31110ST-5F">5f </A>
Engers JL.
Pagenkopf BL.
Eur.
J. Org. Chem.
2009,
6109
<A NAME="RW31110ST-5G">5g </A>
Gondi VB.
Hagihara K.
Rawal VH.
Chem. Commun.
2010,
46:
904
For reviews on N -dioxides
in the asymmetric catalysis, see:
<A NAME="RW31110ST-6A">6a </A>
Chelucci G.
Murineddu G.
Pinna GA.
Tetrahedron: Asymmetry
2004,
15:
1373
<A NAME="RW31110ST-6B">6b </A>
Malkov AV.
Kočovský P.
Eur.
J. Org. Chem.
2007,
29
For examples of our recent work,
see:
<A NAME="RW31110ST-7A">7a </A>
Zheng K.
Shi J.
Liu XH.
Feng XM.
J. Am. Chem. Soc.
2008,
130:
15770
<A NAME="RW31110ST-7B">7b </A>
Zheng K.
Liu XH.
Zhao JN.
Yang Y.
Lin LL.
Feng XM.
Chem. Commun.
2010,
46:
3771
<A NAME="RW31110ST-7C">7c </A>
Xie MS.
Chen XH.
Zhu Y.
Gao B.
Lin LL.
Liu XH.
Feng XM.
Angew.
Chem. Int. Ed.
2010,
49:
3799
<A NAME="RW31110ST-7D">7d </A>
Hui YH.
Jiang J.
Wang WT.
Chen WL.
Cai YF.
Lin LL.
Liu XH.
Feng XM.
Angew. Chem. Int. Ed.
2010,
49:
4290
<A NAME="RW31110ST-7E">7e </A>
Li W.
Wang J.
Hu XL.
Shen K.
Wang WT.
Chu YY.
Lin LL.
Liu XH.
Feng XM.
J.
Am. Chem. Soc.
2010,
132:
8532
<A NAME="RW31110ST-8">8 </A>
Terada M.
Soga K.
Momiyama N.
Angew.
Chem. Int. Ed.
2008,
47:
4122
<A NAME="RW31110ST-9">9 </A>
General Procedure
for the Asymmetric Mukaiyama Aldol Reaction between Glyoxal Derivative
1a and Enolsilane 3a : Ligand L7 (0.01
mmol) and Ni(BF4 )2 ˙6H2 O
(0.01 mmol) were dissolved in CH2 Cl2 (0.5
mL) and stirred at 30 ˚C for 1 h. Then the solvent
was removed and glyoxal derivative 1a (0.1
mmol) was added. After adding CH2 Cl2 (1.0
mL) and enolsilane 3a (0.15 mmol), the
mixture was stirred at 30 ˚C for 24 h under N2 atmosphere.
Then, THF (2.0 mL) and 1 N HCl (1.0 mL) were added to the reaction
mixture. After stirring at r.t. for 30 min, this solution was poured
into a separatory funnel and diluted with Et2 O (5.0 mL)
and H2 O (1.0 mL). After mixing, the aqueous layer was
discarded and the ether layer was washed with sat. aq NaHCO3 (5.0
mL) and brine (5.0 mL). The resulting ether layer was dried over anhyd
MgSO4 , and concentrated in vacuo. The crude product was
chromatographed on silica gel to give the desired adduct 5a : 94% yield; 92% ee {determined
by HPLC analysis with a Chiral OJ-H column, hexane-2-PrOH (80:20),
1.0 mL/min, UV = 254 nm; t
R1 = 18.6
min, t
R2 = 20.5
min); [α]D
²5 +11.9
(c 0.454, in CH2 Cl2 }; ¹ H
NMR (400 MHz, CDCl3 ): δ = 3.37-3.49
(m, 2 H), 4.04 (d, J = 6.0 Hz,
1 H), 5.68-5.73 (m, 1 H), 7.46-7.55 (m, 4 H),
7.58-7.66 (m, 2 H), 7.95-8.01 (m, 4 H) ppm.