Synlett 2011(9): 1273-1276  
DOI: 10.1055/s-0030-1260551
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Perhydroazulenes - A New Class of Liquid Crystalline Materials

Henning Hopf*a, Zakir Hussaina, Rajeev S. Menona, Vitaly Raeva, Peter G. Jones*b, Ludwig M. Pohla
a Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
Fax: +49(531)3915388; e-Mail: H.Hopf@tu-bs.de;
b Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
Fax: +49(531)3915387; e-Mail: P.Jones@tu-bs.de;
Further Information

Publication History

Received 31 January 2011
Publication Date:
05 May 2011 (online)

Abstract

A new class of mesogenic compounds, the perhydroazulenes, carrying substituents in their para positions (HAZ derivatives), has been synthesized. The new liquid crystalline materials display a broad enantiotropic nemantic mesophase slightly above room temperature without any additional smectic phase. Their physical properties reveal that the perhydroazulene moiety can replace the currently often used cyclohexyl and biscyclohexyl units in liquid crystalline materials.

    References and Notes

  • 1 Hussain Z. Hopf H. Pohl L. Oeser Th. Fischer AK. Jones PG. Eur J. Org. Chem.  2006,  5555 
  • 2 Krause GA. Landgrebe K. Synthesis  1984,  885 
  • 3 Nagai M. Lazor J. Wilcox CS. J. Org. Chem.  1990,  55:  3440 
  • 4 Weinhardt KK. Tetrahedron Lett.  1984,  25:  1761 
  • 6 White RD. Wood JL. Org. Lett.  2001,  3:  1825 
  • 8a Bahadur B. Liquid Crystals Applications and Uses   Vol. 1:  World Scientific; Singapore: 1990. 
  • 8b Becker W. Liquid Crystal Newsletter  2000,  15:  13 
  • 8c Scheuble BS. Gehlhaar T. Liquid Crystal Newsletter  2000,  15:  39 
  • 8d For an excellent recent review, see: Kirsch P. Bremer M. Angew. Chem. Int. Ed.  2000,  39:  4216 ; Angew. Chem. 2000, 112, 4384
  • 8e Heckmeier M. Dunmur D. Stegemeyer H. Crystals that Flow   Taylor and Francis; London: 2004.  Sect. D.
  • 9a Pauluth D. Tarumi K. J. Mater. Chem.  2004,  14:  1219 
  • 9b Iwata Y. Naito H. Inoue M. Ichinose H. Klasen-Memmer M. Tarumi K. Jpn. J. Appl. Phys.  2004,  43 (12B):  L1588 
  • 10a Klasen M. Götz A. Liquid Crystal Newsletter  1999,  14:  22 
  • 10b Tarumi K. Heckmeier M. Liquid Crystal Newsletter  2000,  15:  30 
  • 11 Goulding M. Reiffenrath V. Hirschmann H. Liquid Crystal Newsletter  2001,  16:  33 
5

Perhydroazulene-2,6-dione Ethylene Ketal 9
¹H NMR (400.14 MHz, CDCl3): δ = 3.86 (s, 4 H), 2.30-2.48 (m, 4 H), 1.92-2.04 (m, 2 H), 1.77-1.88 (m, 2 H), 1.51-1.69 (m, 6 H) ppm. ¹³C NMR (100.62 MHz, CDCl3): δ = 219.2, 111.5, 64.3 (+), 64.2 (+), 45.5 (+), 39.0 (-), 36.6 (+), 25.8 (+) ppm. MS (IE): m/z (%) = 210 (9) [M+], 126 (5), 99 (100), 86 (10), 55 (8); IR (diamond ATR): ν = 2990, 2931, 2880, 1731 cm. UV (MeCN): λmax = 284 nm.

7

Liquid Crystalline Derivative 16
¹H NMR (300.13 MHz, CDCl3): δ = 6.86 (ddd, 1 H, J 1  = 0.3 Hz, J 2 = 2.4 Hz, J 3 = 8.9 Hz), 6.47 (dd, 1 H, J 1 = 2.0 Hz, J 2 = 7.6 Hz), 4.08 (q, 2 H, J = 7.0 Hz), 2.96-3.12 (m, 1 H), 2.19-2.38 (m, 2 H), 1.59-1.96 (m, 12 H), 1.43 (t, 3 H, J = 7.0 Hz), 1.23-1.38 (m, 4 H), 0.81-0.99 (m, 4 H) ppm. ¹³C NMR (75.47 MHz, CDCl3): δ = 149.1 (dd, J 1 = 10.3 Hz, J 2 = 245.0 Hz), 145.9 (dd, J 1 = 3.0 Hz, J 2 = 8.2 Hz), 141.5 (dd, J 1 = 15.3 Hz, J 2 = 246.5 Hz), 129.1 (dd, J 1 = 1.5 Hz, J 2 = 12.3 Hz), 120.9 (+, dd, J 1 = 4.6 Hz, J 2 = 6.0 Hz), 109.3 (+, d, J = 2.5 Hz), 65.4 (+), 40.8 (+), 39.8 (-), 39.5 (-), 37.9 (+), 37.5 (-), 31.8 (+), 29.2 (+), 21.9 (+), 14.8 (-), 14.4 (-) ppm. MS (IE): m/z (%) = 337 (22) [M + H+], 336 (100) [M+], 198 (13), 197 (20), 184 (52), 171 (14), 169 (12), 156 (36), 143 (24), 83 (15). IR (diamond ATR): ν = 2931, 2889, 2857, 1511, 1473, 1296, 1116, 1081, 805 cm. UV (CH2Cl2): λmax = 229, 268 nm. For mp see Table  [¹] .