Synlett 2011(9): 1321-1323  
DOI: 10.1055/s-0030-1260552
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Copper(I)-Catalyzed Synthesis of Pyrazoles from Phenylhydrazones and Dialkyl Ethylenedicarboxylates in the Presence of Bases

Chaowei Ma, Yanmei Li, Ping Wen, Rulong Yan, Zhiyong Ren, Guosheng Huang*
State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China
Fax: +86(931)8912582; e-Mail: hgs@lzu.edu.cn;
Further Information

Publication History

Received 5 March 2011
Publication Date:
05 May 2011 (online)

Abstract

An easy and efficient copper-catalyzed reaction for the synthesis of polysubstituted pyrazoles from phenylhydrazones and dialkyl ethylenedicarboxylates is described. This reaction can tolerate a range of functionalities, and the corresponding adducts can be obtained in moderate to good yields.

    References and Notes

  • 1a Lamberth C. Heterocycles  2007,  71:  1467 
  • 1b Elguero J. In Comprehensive Heterocyclic Chemistry   Vol. 5:  Katritzky AR. Rees CW. Scriven EFV. Pergamon; Oxford: 1966. 
  • 1c Eicher T. Hauptmann S. Speicher A. The Chemistry of Heterocycles   2nd ed.:  J. Wiley and Sons; New York: 2003.  p.179 
  • 2 Elguero J. Goya P. Jagerovic N. Silva AMS. Pyrazoles as Drugs: Facts and Fantasies, In Targets in Heterocyclic Systems Chemistry and Properties   Vol. 6:  Attanasi OA. Spinelli D. Italian Society of Chemistry; Rome: 2002.  p.52 
  • 3a Sui Z. Guan J. Ferro MP. Mccoy K. Wachter MP. Murray WV. Singer M. Steber M. Ritchie DM. Argentieri DC. Bioorg. Med. Chem. Lett.  2000,  10:  601 
  • 3b Bekhit AA. Abdelaziem T. Bioorg. Med. Chem.  2004,  12:  1935 
  • 3c Selvam C. Jachak SM. Thilagavathi R. Chakraborti AK. Bioorg. Med. Chem. Lett.  2005,  15:  1793 
  • 4 Katoch-Rouse R. Pavlova LA. Caulder T. Hoffman AF. Mukhin AG. Horti AG. J. Med. Chem.  2003,  46:  642 
  • 5a Stauffer SR. Coletta CJ. Tedesco R. Nishiguchi G. Carlson K. Sun J. Katzenellenbogen BS. Katzenellenbogen JA. J. Med. Chem.  2000,  43:  4934 
  • 5b Stauffer SR. Huang Y. Coletta CJ. Tedesco R. Katzenellenbogen JA. Bioorg. Med. Chem.  2001,  9:  141 
  • 6a Knorr L. Ber. Dtsch. Chem. Ges.  1883,  16:  2587 
  • 6b Kost AN. Grandberg II. Adv. Heterocycl. Chem.  1966,  6:  347 
  • 7a Silva VLM. Silva AMS. Pinto DCGA. Cavaleiro JAS. Elguero J. Eur. J. Org. Chem.  2004,  4348 
  • 7b Heller ST. Natarajan SR. Org. Lett.  2006,  8:  2675 
  • 8a Huang YR. Katzenellenbogen JA. Org. Lett.  2000,  2:  2833 
  • 8b Katritzky AR. Wang M. Zhang S. Voronkov MV. Steel PJ. J. Org. Chem.  2001,  66:  6787 
  • 8c Singer RA. Caron S. McDermott RE. Arpin P. Do NM. Synthesis  2003,  1727 
  • 8d Aggarwal VK. De Vicente J. Bonnert RV. J. Org. Chem.  2003,  68:  5381 
  • 8e Ahmed MSM. Kobayashi K. Mori A. Org. Lett.  2005,  7:  4487 
  • 9 Monteiro N. Balme G. Delaunay T. Org. Lett.  2010,  12:  3328 
  • 10 Moses J. Spiteri C. Keeling S. Org. Lett.  2010,  12:  3368 
  • 11 Wada A. Okitsu T. Sato K. Org. Lett.  2010,  12:  3506 
  • 12a Trost BM. Acc. Chem. Res.  2002,  35:  695 
  • 12b Trost BM. Angew. Chem., Int. Ed. Engl.  1995,  34:  259 
  • 13 Winterton N. Green Chem.  2001,  3:  G73 
  • 14a Davies HML. Long MS. Angew. Chem. Int. Ed.  2005,  44:  3518 
  • 14b Wasa M. Yu JQ. J. Am. Chem. Soc.  2008,  130:  14058 
  • 14c Brasche G. Buchwald SL. Angew. Chem. Int. Ed.  2008,  47:  1932 
  • 14d Hamada T. Ye X. Stahl SS. J. Am. Chem. Soc.  2008,  130:  833 
  • 14e Inamoto K. Hasegawa C. Hiroya K. Doi T. Org. Lett.  2008,  10:  5147 
  • 14f Reed S. White MC. J. Am. Chem. Soc.  2008,  130:  3316 
  • 15a Stahl SS. Angew. Chem. Int. Ed.  2004,  43:  3400 
  • 15b Tsang WCP. Munday R. Brasche G. Zheng N. Buchwald LL. J. Org. Chem.  2008,  73:  7603 
  • 15c Monguchi D. Fujiwara T. Furukawa H. Mori A. Org. Lett.  2009,  11:  1607 
  • 16a Brasche G. Buchwald SL. Angew. Chem. Int. Ed.  2008,  47:  1932 
  • 16b Ueda S. Nagasawa H. Angew. Chem. Int. Ed.  2008,  120:  6511 
  • 17a Yan R. Huang J. Luo J. Wen P. Huang G. Liang Y. Synlett  2010,  1071 
  • 17b Yan R. Luo J. Wang CX. Ma CW. Huang G. Liang Y. J. Org. Chem.  2010,  75:  5395 
  • 19 Cacchi S. Bernini R. Fabrizi G. Sferrazza A. Angew. Chem. Int. Ed.  2009,  48:  8078 
18

Typical Procedure for the Synthesis of Pyrazoles
An oven-dried reaction tube was charged with CuI (3.8 mg, 0.02 mmol), NaOAc (16.4 mg, 0.20 mmol), benzaldehyde phenylhydrazone (1a, 47.0mg, 0.24 mmol), and dimethyl acetylenedicarboxylate (2a, 28.4mg, 0.20 mmol). Then DME (2 mL) was added to the reaction system. The mixture was stirred at r.t. for 2 h. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (EtOAc-PE, 1:8) to give 3aa (49.0 mg, 73%) as white solid (Table  [²] , entry 1); mp 152-154 ˚C. ¹H NMR (400 MHz, CDCl3): δ = 7.75 (dd, J = 7.4, 1.8 Hz, 2 H), 7.54 (dd, J = 8.2, 1.4 Hz, 2 H), 7.50-7.40 (m, 6 H), 3.85 (s, 3 H), 3.82 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 163.37, 160.64, 151.98, 139.03, 136.82, 131.33, 129.16, 129.06, 128.87, 128.77, 128.16, 124.53, 114.13, 53.11, 52.12. IR (neat): 2952, 1733, 1499, 1447, 1266, 911, 732 cm. HRMS: m/z calcd for C19H16N2O4 [M + H]+: 337.1183; found: 337.1175.