Abstract
An array of tetrasubstituted saturated fused pyrimidines has
been synthesized through two-sequential, simple, and efficient one-pot
operations. The strategic utilization of the N -PMB
group proved critical in the ability to construct a broad range
of N -vinyl tertiary enamide starting
materials. This stands as a flexible approach to functionalized
pyrimidines with the capability of manipulating either ketone, acid
chloride, or nitrile reaction partners.
Key words
bicyclic compounds - enamides - imines - medicinal chemistry - pyrimidines
References and Notes
For reviews, see:
<A NAME="RS05211ST-1A">1a </A>
Undheim K.
Benneche T. In
Comprehensive
Heterocyclic Chemistry II
Vol. 6:
Katritzky AR.
Rees CW.
Scriven EFV.
McKillop A.
Pergamon;
Oxford
(UK):
1996.
p.93-231
<A NAME="RS05211ST-1B">1b </A>
Lagoja IM.
Chem. Biodiversity
2005,
2:
1
<A NAME="RS05211ST-1C">1c </A>
Michael JP.
Nat. Prod. Rep.
2005,
22:
627
<A NAME="RS05211ST-1D">1d </A>
Joule JA.
Mills K. In Heterocyclic
Chemistry
4th ed.:
Blackwell Science;
Cambridge
(MA):
2000.
p.194-232
<A NAME="RS05211ST-1E">1e </A>
Erian AW.
Chem. Rev.
1993,
93:
1991
<A NAME="RS05211ST-1F">1f </A>
Hill MD.
Movassaghi M.
Chem.
Eur. J.
2008,
14:
6836
<A NAME="RS05211ST-2A">2a </A>
Movassaghi M.
Hill MD.
J.
Am. Chem. Soc.
2006,
128:
14254
<A NAME="RS05211ST-2B">2b </A>
Ahmad OK.
Hill MD.
Movassaghi M.
J. Org. Chem.
2009,
74:
8460
For the synthesis of pyridines and quinolines from N -vinyl and N -aryl
amides, see:
<A NAME="RS05211ST-2C">2c </A>
Movassaghi M.
Hill MD.
J. Am. Chem. Soc.
2006,
128:
4592
<A NAME="RS05211ST-2D">2d </A>
Movassaghi M.
Hill MD.
Ahmad OK.
J.
Am. Chem. Soc.
2007,
129:
10096
<A NAME="RS05211ST-3">3 </A> For a general procedure, see:
DeRuiter J.
Swearingen BE.
Wandrekar V.
Mayfield CA.
J.
Med. Chem.
1989,
32:
1033
<A NAME="RS05211ST-4A">4a </A>
Shen R.
Lin CT.
Bowman EJ.
Bowman BJ.
Porco JA.
J.
Am. Chem. Soc.
2003,
125:
7889
<A NAME="RS05211ST-4B">4b </A>
Jiang L.
Job GE.
Klapars A.
Buchwald SL.
Org. Lett.
2003,
5:
3667
<A NAME="RS05211ST-4C">4c </A>
Pan X.
Cai Q.
Ma D.
Org.
Lett.
2004,
6:
1809
For the use of Ti(OEt)4 as
a Lewis acid and water scavenger, see:
<A NAME="RS05211ST-5A">5a </A>
Liu G.
Cogan DA.
Owens TD.
Tang TP.
Ellman JA.
J.
Org. Chem.
1999,
64:
1278
<A NAME="RS05211ST-5B">5b </A>
Cogan
DA.
Ellman JA.
J.
Am. Chem. Soc.
1999,
121:
268
<A NAME="RS05211ST-5C">5c </A>
Davis FA.
Zhang Y.
Andemichael Y.
Fang T.
Fanelli DL.
Zhang H.
J. Org. Chem.
1999,
64:
1403
<A NAME="RS05211ST-6">6 </A>
Imase H.
Noguchi K.
Hirano M.
Tanaka K.
Org. Lett.
2008,
10:
3563
<A NAME="RS05211ST-7">7 </A> For the synthesis of tri- and tetrasubstituted
pyrimidines from the nucleophilic addition of two equivalents of
nitriles to activated ketones, see:
Martínez AG.
Fernández AH.
Fraile AG.
Subramanian LR.
Hanack M.
J. Org. Chem.
1992,
57:
1627
<A NAME="RS05211ST-8">8 </A> For the synthesis of bicyclic 4-aminopyrimidines
from the reaction of dinitriles with mononitriles, see:
Chercheja S.
Simpson JK.
Lam HW.
Tetrahedron
2011,
67:
3839
<A NAME="RS05211ST-9">9 </A>
Spectroscopic studies and experiments
with carbocation scavengers (thioanisole, triethylsilane, etc.)
were unsuccessful in identifying the PMB-containing side product.
For detailed studies involving
the activation of amides with trifluoromethanesulfonic anhydride
and pyridine, see:
<A NAME="RS05211ST-10A">10a </A>
Charette AB.
Grenon M.
Can. J. Chem.
2001,
79:
1694
<A NAME="RS05211ST-10B">10b </A>
Charette AB.
Mathieu S.
Martel J.
Org. Lett.
2005,
7:
5401
<A NAME="RS05211ST-11">11 </A>
Temperature-controlled experiments
were performed with a Bruker 500 MHz, Avance III spectrometer with
a 5 mm Bruker PABBO cryoprobe with data collection at -70 ˚C, -40 ˚C, -20 ˚C,
0 ˚C, and 30 ˚C.
<A NAME="RS05211ST-12">12 </A>
Medley JW.
Movassaghi M.
J. Org. Chem.
2009,
74:
1341
<A NAME="RS05211ST-13">13 </A>
Successful formation of saturated
fused pyrimidine products can also be achieved in the absence of
2-chloropyridine, although longer reaction times are required (4-72
h) and lower yields (10-15% loss) are typically
obtained.
<A NAME="RS05211ST-14">14 </A> For a current review on the recent
chemistry of enamides, see:
Carbery DR.
Org.
Biomol. Chem.
2008,
6:
3455
For the recent use of enamides
in organic synthesis, see:
<A NAME="RS05211ST-15A">15a </A>
Feltenberger JB.
Hayashi R.
Tang Y.
Babiash ESC.
Hsung RP.
Org. Lett.
2009,
11:
3666
<A NAME="RS05211ST-15B">15b </A>
Allan KM.
Stoltz BM.
J.
Am. Chem. Soc.
2008,
130:
17270
<A NAME="RS05211ST-15C">15c </A>
Allan KM.
Stoltz BM.
J.
Am. Chem. Soc.
2008,
130:
1558
<A NAME="RS05211ST-15D">15d </A>
Ylioja PM.
Mosley AD.
Charlot CE.
Carbery DR.
Tetrahedron
Lett.
2008,
49:
1111
<A NAME="RS05211ST-15E">15e </A>
Lu T.
Song Z.
Hsung RP.
Org.
Lett.
2008,
10:
541
<A NAME="RS05211ST-15F">15f </A>
Nguyen TB.
Martel A.
Dhal R.
Dujardin G.
J. Org. Chem.
2008,
73:
2621
<A NAME="RS05211ST-15G">15g </A>
Gohier F.
Bouhadjera K.
Faye D.
Gaulon C.
Maisonneuve V.
Dujardin G.
Dhal R.
Org.
Lett.
2007,
9:
211
<A NAME="RS05211ST-15H">15h </A>
Song Z.
Lu T.
Hsung RP.
Al-Rashid ZF.
Ko C.
Tang Y.
Angew. Chem. Int. Ed.
2007,
46:
4069
<A NAME="RS05211ST-15I">15i </A>
Martin R.
Cuenca A.
Buchwald SL.
Org.
Lett.
2007,
9:
5221
<A NAME="RS05211ST-15J">15j </A>
Ko C.
Hsung RP.
Al-Rashid ZF.
Feltenberger JB.
Lu T.
Wei Y.
Yang J.
Zificsak CA.
Org.
Lett.
2007,
9:
4459
<A NAME="RS05211ST-15K">15k </A>
Barbazanges M.
Meyer C.
Cossy J.
Org.
Lett.
2007,
9:
3245
<A NAME="RS05211ST-16A">16a </A>
Bergeron P,
Cohen F,
Estrada A,
Koehler MFT,
Lau KHL,
Ly C,
Lyssikatos JP,
Ortwine DF,
Pei Z, and
Zhao X. inventors; WO 2010/014939 A1.
<A NAME="RS05211ST-16B">16b </A>
Bergeron P,
Cohen F,
Estrada A,
Koehler MFT,
Lee W,
Ly C,
Lyssikatos JP,
Pei Z, and
Zhao X. inventors; WO
2010/151601 A1.