Semin Thromb Hemost 2010; 36(8): 833-844
DOI: 10.1055/s-0030-1267037
© Thieme Medical Publishers

Mechanisms of Microparticle Generation: On the Trail of the Mitochondrion!

Olivier Morel1 , 2 , 3 , Florence Toti1 , 2 , Laurence Jesel3 , Jean-Marie Freyssinet1 , 2
  • 1U. 770 INSERM, Hôpital de Bicêtre, France; Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre
  • 2Faculté de Médecine, Université de Strasbourg, Institut d'Hématologie & Immunologie, Strasbourg
  • 3Pôle d'activité médico-chirurgicale Cardio-Vasculaire des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
Further Information

Publication History

Publication Date:
03 November 2010 (online)

ABSTRACT

Membrane remodeling, phosphatidylserine (PS) exposure, and subsequent microparticle (MP) shedding regulation is a critical step in maintaining vascular homeostasis. Shed MP, more particularly those of platelet origin, could be viewed as a way to increase the catalytic procoagulant surface relying on the essential presence of PS for optimal hemostatic response. Whether “flip-flop” is mandatory for the release of MP is suggested from the phenotype of Scott's syndrome, a rare bleeding disorder in which both PS exposure and MP shedding are deficient. PS exposure results from a specific cytoskeleton degradation pathway involving caspases, tuned by mitochondria permeability changes, and requiring a sustained increase in intracellular calcium. The actual roles of transmembrane ion transport or transient transmembrane pores in PS exposure remain to be more firmly established. Considering that an excess of plasma membrane procoagulant activity is associated with an increased risk of thrombosis, the identification of effectors of PS exposure and MP release appear relevant targets in thrombosis research and focused drug design. In this view, animal models of Scott's syndrome should prove of primary importance for the characterization of the genetic trait(s) accounting for the associated defect that would provide an important hint toward the control of PS exposure and subsequent MP release.

REFERENCES

  • 1 Freyssinet J M, Toti F, Hugel B et al. Apoptosis in vascular disease.  Thromb Haemost. 1999;  82(2) 727-735
  • 2 Fadok V A, Bratton D L, Rose D M, Pearson A, Ezekewitz R A, Henson P M. A receptor for phosphatidylserine-specific clearance of apoptotic cells.  Nature. 2000;  405(6782) 85-90
  • 3 Morel O, Morel N, Freyssinet J M, Toti F. Platelet microparticles and vascular cells interactions: a checkpoint between the haemostatic and thrombotic responses.  Platelets. 2008;  19(1) 9-23
  • 4 VanWijk M J, VanBavel E, Sturk A, Nieuwland R. Microparticles in cardiovascular diseases.  Cardiovasc Res. 2003;  59(2) 277-287
  • 5 Morel O, Toti F, Hugel B et al. Procoagulant microparticles: disrupting the vascular homeostasis equation?.  Arterioscler Thromb Vasc Biol. 2006;  26(12) 2594-2604
  • 6 Bach R, Rifkin D B. Expression of tissue factor procoagulant activity: regulation by cytosolic calcium.  Proc Natl Acad Sci U S A. 1990;  87(18) 6995-6999
  • 7 Mackman N, Tilley R E, Key N S. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis.  Arterioscler Thromb Vasc Biol. 2007;  27(8) 1687-1693
  • 8 Müller I, Klocke A, Alex M et al. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets.  FASEB J. 2003;  17(3) 476-478
  • 9 Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses.  Nat Rev Immunol. 2009;  9(8) 581-593
  • 10 Hugel B, Martínez M C, Kunzelmann C, Freyssinet J M. Membrane microparticles: two sides of the coin.  Physiology (Bethesda). 2005;  20 22-27
  • 11 Seigneuret M, Zachowski A, Hermann A, Devaux P F. Asymmetric lipid fluidity in human erythrocyte membrane: new spin-label evidence.  Biochemistry. 1984;  23(19) 4271-4275
  • 12 Smeets E F, Comfurius P, Bevers E M, Zwaal R F. Calcium-induced transbilayer scrambling of fluorescent phospholipid analogs in platelets and erythrocytes.  Biochim Biophys Acta. 1994;  1195(2) 281-286
  • 13 Williamson P, Bevers E M, Smeets E F, Comfurius P, Schlegel R A, Zwaal R F. Continuous analysis of the mechanism of activated transbilayer lipid movement in platelets.  Biochemistry. 1995;  34(33) 10448-10455
  • 14 Comfurius P, Williamson P, Smeets E F, Schlegel R A, Bevers E M, Zwaal R F. Reconstitution of phospholipid scramblase activity from human blood platelets.  Biochemistry. 1996;  35(24) 7631-7634
  • 15 Weiss H J, Vicic W J, Lages B A, Rogers J. Isolated deficiency of platelet procoagulant activity.  Am J Med. 1979;  67(2) 206-213
  • 16 Toti F, Satta N, Fressinaud E, Meyer D, Freyssinet J M. Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited disorder.  Blood. 1996;  87(4) 1409-1415
  • 17 Miletich J P, Kane W H, Hofmann S L, Stanford N, Majerus P W. Deficiency of factor Xa-factor Va binding sites on the platelets of a patient with a bleeding disorder.  Blood. 1979;  54(5) 1015-1022
  • 18 Rosing J, Bevers E M, Comfurius P et al. Impaired factor X and prothrombin activation associated with decreased phospholipid exposure in platelets from a patient with a bleeding disorder.  Blood. 1985;  65(6) 1557-1561
  • 19 Sims P J, Wiedmer T, Esmon C T, Weiss H J, Shattil S J. Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity.  J Biol Chem. 1989;  264(29) 17049-17057
  • 20 Bevers E M, Wiedmer T, Comfurius P et al. Defective Ca(2+)-induced microvesiculation and deficient expression of procoagulant activity in erythrocytes from a patient with a bleeding disorder: a study of the red blood cells of Scott syndrome.  Blood. 1992;  79(2) 380-388
  • 21 Kojima H, Newton-Nash D, Weiss H J, Zhao J, Sims P J, Wiedmer T. Production and characterization of transformed B-lymphocytes expressing the membrane defect of Scott syndrome.  J Clin Invest. 1994;  94(6) 2237-2244
  • 22 Munnix I C, Harmsma M, Giddings J C et al. Store-mediated calcium entry in the regulation of phosphatidylserine exposure in blood cells from Scott patients.  Thromb Haemost. 2003;  89(4) 687-695
  • 23 Parry D H, Giddings J C, Bloom A L. Familial haemostatic defect associated with reduced prothrombin consumption.  Br J Haematol. 1980;  44(2) 323-334
  • 24 Brooks M B, Catalfamo J L, Brown H A, Ivanova P, Lovaglio J. A hereditary bleeding disorder of dogs caused by a lack of platelet procoagulant activity.  Blood. 2002;  99(7) 2434-2441
  • 25 Zhou Q, Zhao J, Stout J G, Luhm R A, Wiedmer T, Sims P J. Molecular cloning of human plasma membrane phospholipid scramblase. A protein mediating transbilayer movement of plasma membrane phospholipids.  J Biol Chem. 1997;  272(29) 18240-18244
  • 26 Zhou Q, Zhao J, Wiedmer T, Sims P J. Normal hemostasis but defective hematopoietic response to growth factors in mice deficient in phospholipid scramblase 1.  Blood. 2002;  99(11) 4030-4038
  • 27 Janel N, Leroy C, Laude I et al. Assessment of the expression of candidate human plasma membrane phospholipid scramblase in Scott syndrome cells.  Thromb Haemost. 1999;  81(2) 322-323
  • 28 Zhou Q, Sims P J, Wiedmer T. Expression of proteins controlling transbilayer movement of plasma membrane phospholipids in the B lymphocytes from a patient with Scott syndrome.  Blood. 1998;  92(5) 1707-1712
  • 29 Bateman A, Finn R D, Sims P J, Wiedmer T, Biegert A, Söding J. Phospholipid scramblases and Tubby-like proteins belong to a new superfamily of membrane tethered transcription factors.  Bioinformatics. 2009;  25(2) 159-162
  • 30 Nofer J R, Herminghaus G, Brodde M et al. Impaired platelet activation in familial high density lipoprotein deficiency (Tangier disease).  J Biol Chem. 2004;  279(32) 34032-34037
  • 31 Hamon Y, Broccardo C, Chambenoit O et al. ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine.  Nat Cell Biol. 2000;  2(7) 399-406
  • 32 Schmitz G, Schambeck C M. Molecular defects in the ABCA1 pathway affect platelet function.  Pathophysiol Haemost Thromb. 2006;  35(1–2) 166-174
  • 33 Elliott J I, Sardini A, Cooper J C et al. Phosphatidylserine exposure in B lymphocytes: a role for lipid packing.  Blood. 2006;  108(5) 1611-1617
  • 34 Albrecht C, McVey J H, Elliott J I et al. A novel missense mutation in ABCA1 results in altered protein trafficking and reduced phosphatidylserine translocation in a patient with Scott syndrome.  Blood. 2005;  106(2) 542-549
  • 35 Brooks M B, Catalfamo J L, Etter K, Brisbin A, Bustamante C D. Exclusion of ABCA-1 as a candidate gene for canine Scott syndrome.  J Thromb Haemost. 2008;  6(9) 1608-1610
  • 36 Toti F, Schindler V, Riou J F et al. Another link between phospholipid transmembrane migration and ABC transporter gene family, inferred from a rare inherited disorder of phosphatidylserine externalization.  Biochem Biophys Res Commun. 1997;  241(2) 548-552
  • 37 van Helvoort A, Smith A J, Sprong H et al. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine.  Cell. 1996;  87(3) 507-517
  • 38 Brooks M, Etter K, Catalfamo J, Brisbin A, Bustamante C, Mezey J. A genome-wide linkage scan in German shepherd dogs localizes canine platelet procoagulant deficiency (Scott syndrome) to canine chromosome 27.  Gene. 2010;  450(1–2) 70-75
  • 39 Wolfs J L, Comfurius P, Rasmussen J T et al. Activated scramblase and inhibited aminophospholipid translocase cause phosphatidylserine exposure in a distinct platelet fraction.  Cell Mol Life Sci. 2005;  62(13) 1514-1525
  • 40 Dale G L. Coated-platelets: an emerging component of the procoagulant response.  J Thromb Haemost. 2005;  3(10) 2185-2192
  • 41 Morel O, Toti F, Hugel B, Freyssinet J M. Cellular microparticles: a disseminated storage pool of bioactive vascular effectors.  Curr Opin Hematol. 2004;  11(3) 156-164
  • 42 Simak J, Gelderman M P. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers.  Transfus Med Rev. 2006;  20(1) 1-26
  • 43 Horstman L L, Jy W, Jimenez J J, Bidot C, Ahn Y S. New horizons in the analysis of circulating cell-derived microparticles.  Keio J Med. 2004;  53(4) 210-230
  • 44 Bucki R, Giraud F, Sulpice J C. Phosphatidylinositol 4,5-bisphosphate domain inducers promote phospholipid transverse redistribution in biological membranes.  Biochemistry. 2000;  39(19) 5838-5844
  • 45 Bucki R, Janmey P A, Vegners R, Giraud F, Sulpice J C. Involvement of phosphatidylinositol 4,5-bisphosphate in phosphatidylserine exposure in platelets: use of a permeant phosphoinositide-binding peptide.  Biochemistry. 2001;  40(51) 15752-15761
  • 46 Cauwenberghs S, Feijge M A, Harper A G, Sage S O, Curvers J, Heemskerk J W. Shedding of procoagulant microparticles from unstimulated platelets by integrin-mediated destabilization of actin cytoskeleton.  FEBS Lett. 2006;  580(22) 5313-5320
  • 47 Wolfs J L, Wielders S J, Comfurius P et al. Reversible inhibition of the platelet procoagulant response through manipulation of the Gardos channel.  Blood. 2006;  108(7) 2223-2228
  • 48 Shcherbina A, Remold-O'Donnell E. Role of caspase in a subset of human platelet activation responses.  Blood. 1999;  93(12) 4222-4231
  • 49 Dachary-Prigent J, Freyssinet J M, Pasquet J M, Carron J C, Nurden A T. Annexin V as a probe of aminophospholipid exposure and platelet membrane vesiculation: a flow cytometry study showing a role for free sulfhydryl groups.  Blood. 1993;  81(10) 2554-2565
  • 50 Yano Y, Kambayashi J, Shiba E et al. The role of protein phosphorylation and cytoskeletal reorganization in microparticle formation from the platelet plasma membrane.  Biochem J. 1994;  299(Pt 1) 303-308
  • 51 Sebbagh M, Renvoizé C, Hamelin J, Riché N, Bertoglio J, Bréard J. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing.  Nat Cell Biol. 2001;  3(4) 346-352
  • 52 Sapet C, Simoncini S, Loriod B et al. Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2.  Blood. 2006;  108(6) 1868-1876
  • 53 Simoncini S, Njock M S, Robert S et al. TRAIL/Apo2L mediates the release of procoagulant endothelial microparticles induced by thrombin in vitro: a potential mechanism linking inflammation and coagulation.  Circ Res. 2009;  104(8) 943-951
  • 54 Dachary-Prigent J, Pasquet J M, Freyssinet J M, Nurden A T. Calcium involvement in aminophospholipid exposure and microparticle formation during platelet activation: a study using Ca2+-ATPase inhibitors.  Biochemistry. 1995;  34(36) 11625-11634
  • 55 Parekh A B, Putney Jr J W. Store-operated calcium channels.  Physiol Rev. 2005;  85(2) 757-810
  • 56 Martínez M C, Martin S, Toti F et al. Significance of capacitative Ca2+entry in the regulation of phosphatidylserine expression at the surface of stimulated cells.  Biochemistry. 1999;  38(31) 10092-10098
  • 57 Elliott J I, Mumford A D, Albrecht C et al. Characterisation of lymphocyte responses to Ca2+ in Scott syndrome.  Thromb Haemost. 2004;  91(2) 412-415
  • 58 Kunzelmann-Marche C, Freyssinet J M, Martínez M C. Loss of plasma membrane phospholipid asymmetry requires raft integrity. Role of transient receptor potential channels and ERK pathway.  J Biol Chem. 2002;  277(22) 19876-19881
  • 59 Arachiche A, Badirou I, Dachary-Prigent J, Garcin I, Geldwerth-Feniger D, Kerbiriou-Nabias D. ERK activation by Ca2+ ionophores depends on Ca2+ entry in lymphocytes but not in platelets, and does not conduct membrane scrambling.  Cell Mol Life Sci. 2008;  65(23) 3861-3871
  • 60 Arachiche A, Kerbiriou-Nabias D, Garcin I, Letellier T, Dachary-Prigent J. Rapid procoagulant phosphatidylserine exposure relies on high cytosolic calcium rather than on mitochondrial depolarization.  Arterioscler Thromb Vasc Biol. 2009;  29(11) 1883-1889
  • 61 Kunzelmann-Marche C, Freyssinet J M, Martínez M C. Regulation of phosphatidylserine transbilayer redistribution by store-operated Ca2+ entry: role of actin cytoskeleton.  J Biol Chem. 2001;  276(7) 5134-5139
  • 62 Dervaux T, Porro C, Kunzelmann C, Freyssinet J M, Martínez M C. Cyclic GMP modulates store-operated calcium entry inducing phosphatidylserine translocation at the surface of megakaryocytic cells.  Biochimie. 2006;  88(9) 1175-1182
  • 63 Kunzelmann C, Freyssinet J M, Martínez M C. Rho A participates in the regulation of phosphatidylserine-dependent procoagulant activity at the surface of megakaryocytic cells.  J Thromb Haemost. 2004;  2(4) 644-650
  • 64 Bergmeier W, Oh-Hora M, McCarl C A, Roden R C, Bray P F, Feske S. R93W mutation in Orai1 causes impaired calcium influx in platelets.  Blood. 2009;  113(3) 675-678
  • 65 Galitzine M, Capiod T, Le Deist F, Meyer D, Freyssinet J M, Kerbiriou-Nabias D. Ca2+ ionophores trigger membrane remodeling without a need for store-operated Ca2+ entry.  Biochem Biophys Res Commun. 2005;  327(1) 335-341
  • 66 Michel V, Bakovic M. Lipid rafts in health and disease.  Biol Cell. 2007;  99(3) 129-140
  • 67 Le Goff W, Peng D Q, Settle M, Brubaker G, Morton R E, Smith J D. Cyclosporin A traps ABCA1 at the plasma membrane and inhibits ABCA1-mediated lipid efflux to apolipoprotein A-I.  Arterioscler Thromb Vasc Biol. 2004;  24(11) 2155-2161
  • 68 Lorenzi I, von Eckardstein A, Cavelier C, Radosavljevic S, Rohrer L. Apolipoprotein A-I but not high-density lipoproteins are internalised by RAW macrophages: roles of ATP-binding cassette transporter A1 and scavenger receptor BI.  J Mol Med. 2008;  86(2) 171-183
  • 69 Karwatsky J, Ma L, Dong F, Zha X. Cholesterol efflux to apoA-I in ABCA1-expressing cells is regulated by Ca2+ -dependent calcineurin signaling.  J Lipid Res. 2010;  51(5) 1144-1156
  • 70 Pasquet J M, Dachary-Prigent J, Nurden A T. Microvesicle release is associated with extensive protein tyrosine dephosphorylation in platelets stimulated by A23187 or a mixture of thrombin and collagen.  Biochem J. 1998;  333(Pt 3) 591-599
  • 71 Heemskerk J W, Vuist W M, Feijge M A, Reutelingsperger C P, Lindhout T. Collagen but not fibrinogen surfaces induce bleb formation, exposure of phosphatidylserine, and procoagulant activity of adherent platelets: evidence for regulation by protein tyrosine kinase-dependent Ca2+ responses.  Blood. 1997;  90(7) 2615-2625
  • 72 Siljander P, Farndale R W, Feijge M A et al. Platelet adhesion enhances the glycoprotein VI-dependent procoagulant response: Involvement of p38 MAP kinase and calpain.  Arterioscler Thromb Vasc Biol. 2001;  21(4) 618-627
  • 73 Imam-Sghiouar N, Laude-Lemaire I, Labas V et al. Subproteomics analysis of phosphorylated proteins: application to the study of B-lymphoblasts from a patient with Scott syndrome.  Proteomics. 2002;  2(7) 828-838
  • 74 Elliott J I, Higgins C F. IKCa1 activity is required for cell shrinkage, phosphatidylserine translocation and death in T lymphocyte apoptosis.  EMBO Rep. 2003;  4(2) 189-194
  • 75 Bucki R, Pastore J J, Giraud F, Janmey P A, Sulpice J C. Involvement of the Na+ /H+ exchanger in membrane phosphatidylserine exposure during human platelet activation.  Biochim Biophys Acta. 2006;  1761(2) 195-204
  • 76 Raphael R M, Waugh R E, Svetina S, Zeks B. Fractional occurrence of defects in membranes and mechanically driven interleaflet phospholipid transport.  Phys Rev E Stat Nonlin Soft Matter Phys. 2001;  64(5 Pt 1) 051913
  • 77 Lang K S, Lang P A, Bauer C et al. Mechanisms of suicidal erythrocyte death.  Cell Physiol Biochem. 2005;  15(5) 195-202
  • 78 Contreras F X, Villar A V, Alonso A, Kolesnick R N, Goñi F M. Sphingomyelinase activity causes transbilayer lipid translocation in model and cell membranes.  J Biol Chem. 2003;  278(39) 37169-37174
  • 79 Devaux P F, López-Montero I, Bryde S. Proteins involved in lipid translocation in eukaryotic cells.  Chem Phys Lipids. 2006;  141(1–2) 119-132
  • 80 Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F. Mitochondria and cell death. Mechanistic aspects and methodological issues.  Eur J Biochem. 1999;  264(3) 687-701
  • 81 Leytin V, Allen D J, Mutlu A, Gyulkhandanyan A V, Mykhaylov S, Freedman J. Mitochondrial control of platelet apoptosis: effect of cyclosporin A, an inhibitor of the mitochondrial permeability transition pore.  Lab Invest. 2009;  89(4) 374-384
  • 82 Fadok V A, Voelker D R, Campbell P A, Cohen J J, Bratton D L, Henson P M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages.  J Immunol. 1992;  148(7) 2207-2216
  • 83 Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death.  Am J Pathol. 1995;  146(1) 3-15
  • 84 Aupeix K, Hugel B, Martin T et al. The significance of shed membrane particles during programmed cell death in vitro, and in vivo, in HIV-1 infection.  J Clin Invest. 1997;  99(7) 1546-1554
  • 85 Martínez M C, Freyssinet J M. Deciphering the plasma membrane hallmarks of apoptotic cells: phosphatidylserine transverse redistribution and calcium entry.  BMC Cell Biol. 2001;  2 20
  • 86 Kozian D, Proulle V, Nitsche A et al. Identification of genes involved in Ca2+ ionophore A23187-mediated apoptosis and demonstration of a high susceptibility for transcriptional repression of cell cycle genes in B lymphoblasts from a patient with Scott syndrome.  BMC Genomics. 2005;  6 146
  • 87 MacKenzie A, Wilson H L, Kiss-Toth E, Dower S K, North R A, Surprenant A. Rapid secretion of interleukin-1beta by microvesicle shedding.  Immunity. 2001;  15(5) 825-835
  • 88 Cohen Z, Gonzales R F, Davis-Gorman G F, Copeland J G, McDonagh P F. Thrombin activity and platelet microparticle formation are increased in type 2 diabetic platelets: a potential correlation with caspase activation.  Thromb Res. 2002;  107(5) 217-221
  • 89 Dale G L, Friese P. Bax activators potentiate coated-platelet formation.  J Thromb Haemost. 2006;  4(12) 2664-2669
  • 90 Lopez J J, Salido G M, Pariente J A, Rosado J A. Thrombin induces activation and translocation of Bid, Bax and Bak to the mitochondria in human platelets.  J Thromb Haemost. 2008;  6(10) 1780-1788
  • 91 Halestrap A P, Davidson A M. Inhibition of Ca2(+ )-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase.  Biochem J. 1990;  268(1) 153-160
  • 92 Dale G L, Remenyi G, Friese P. Quantitation of microparticles released from coated-platelets.  J Thromb Haemost. 2005;  3(9) 2081-2088
  • 93 Augereau O, Rossignol R, DeGiorgi F, Mazat J P, Letellier T, Dachary-Prigent J. Apoptotic-like mitochondrial events associated to phosphatidylserine exposure in blood platelets induced by local anaesthetics.  Thromb Haemost. 2004;  92(1) 104-113
  • 94 Baines C P, Kaiser R A, Purcell N H et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death.  Nature. 2005;  434(7033) 658-662
  • 95 Schoenwaelder S M, Yuan Y, Josefsson E C et al. Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function.  Blood. 2009;  114(3) 663-666
  • 96 Dachary-Prigent J, Pasquet J M, Fressinaud E, Toti F, Freyssinet J M, Nurden A T. Aminophospholipid exposure, microvesiculation and abnormal protein tyrosine phosphorylation in the platelets of a patient with Scott syndrome: a study using physiologic agonists and local anaesthetics.  Br J Haematol. 1997;  99(4) 959-967
  • 97 Rand M L, Wang H, Bang K W, Poon K S, Packham M A, Freedman J. Procoagulant surface exposure and apoptosis in rabbit platelets: association with shortened survival and steady-state senescence.  J Thromb Haemost. 2004;  2(4) 651-659
  • 98 Cardoso C M, Rumjanek V M, De Meis L. Uncoupling of Ca2+ transport ATPase in muscle and blood platelets by diacylglycerol analogues and cyclosporin A antagonism.  Biochem J. 1997;  327(Pt 3) 795-801
  • 99 Arber S, Krause K H, Caroni P. s-cyclophilin is retained intracellularly via a unique COOH-terminal sequence and colocalizes with the calcium storage protein calreticulin.  J Cell Biol. 1992;  116(1) 113-125
  • 100 Al-Massarani G, Vacher-Coponat H, Paul P et al. Kidney transplantation decreases the level and procoagulant activity of circulating microparticles.  Am J Transplant. 2009;  9(3) 550-557
  • 101 Morel O, Toti F, Morel N, Freyssinet J M. Microparticles in endothelial cell and vascular homeostasis: are they really noxious?.  Haematologica. 2009;  94(3) 313-317

Jean-Marie FreyssinetD.Sc. 

Institut d'Hématologie & Immunologie, Faculté de Médecine, Université de Strasbourg

4 rue Kirschleger F-67085 Strasbourg, France

Email: jean-Marie.freyssinet@unistra.fr

    >