Semin Liver Dis 2011; 31(1): 061-070
DOI: 10.1055/s-0031-1272835
© Thieme Medical Publishers

Fibrolamellar Carcinoma: A Review with Focus on Genetics and Comparison to Other Malignant Primary Liver Tumors

Stephen C. Ward1 , Samuel Waxman2
  • 1The Lillian and Henry M. Stratton-Hans Popper Department of Pathology, Mount Sinai School of Medicine, New York
  • 2Department of Medicine, Tisch Cancer Institute and Oncological Sciences, Mount Sinai School of Medicine, New York
Further Information

Publication History

Publication Date:
22 February 2011 (online)

ABSTRACT

Fibrolamellar carcinoma is a rare primary malignant liver neoplasm that usually affects adolescents and young adults with no underlying liver disease. Morphologically, the tumor cells resemble oncocytic hepatocytes arranged in cords with a stroma of lamellated collagen fibers. Immunohistochemical studies have found that fibrolamellar carcinomas express markers associated with both biliary (CK7 and epithelial membrane antigen) and hepatocytic (heppar-1and glypican-3) differentiation, as well as markers associated with hepatic progenitor cells (CK19 and EpCAM) and stem cells (CD133 and CD44). Genetic studies show fewer alterations compared with classic hepatocellular carcinoma. Pooled data from comparative genomic hybridization studies show that fibrolamellar carcinomas have fewer and less frequent genomic alterations when compared with classic hepatocellular carcinoma, cholangiocarcinoma, and hepatoblastoma. Of the alterations seen in fibrolamellar carcinoma, the most frequent are gains in 1q and 8q (also frequently seen in other hepatic tumors) and loss of 18q. Fibrolamellar carcinoma also has less frequent methylation of tumor suppressor promoters compared with hepatocellular carcinoma and minimal alterations in mitochondrial DNA. Fibrolamellar carcinoma is associated with better survival than hepatocellular carcinoma and cholangiocarcinoma, presumably due to the young age of the patients and the lack of cirrhosis. These features make more aggressive surgical therapy possible. There is currently very little information on the effectiveness of chemotherapy for fibrolamellar carcinoma.

REFERENCES

  • 1 Edmondson H A. Differential diagnosis of tumors and tumor-like lesions of liver in infancy and childhood.  AMA J Dis Child. 1956;  91 (2) 168-186
  • 2 Craig J R, Peters R L, Edmondson H A, Omata M. Fibrolamellar carcinoma of the liver: a tumor of adolescents and young adults with distinctive clinico-pathologic features.  Cancer. 1980;  46 (2) 372-379
  • 3 Berman M M, Libbey N P, Foster J H. Hepatocellular carcinoma. Polygonal cell type with fibrous stroma—an atypical variant with a favorable prognosis.  Cancer. 1980;  46 (6) 1448-1455
  • 4 Berman M A, Burnham J A, Sheahan D G. Fibrolamellar carcinoma of the liver: an immunohistochemical study of nineteen cases and a review of the literature.  Hum Pathol. 1988;  19 (7) 784-794
  • 5 El-Serag H B, Davila J A. Is fibrolamellar carcinoma different from hepatocellular carcinoma? A US population-based study.  Hepatology. 2004;  39 (3) 798-803
  • 6 Stipa F, Yoon S S, Liau K H et al.. Outcome of patients with fibrolamellar hepatocellular carcinoma.  Cancer. 2006;  106 (6) 1331-1338
  • 7 Lazaridis K N, Gores G J. Cholangiocarcinoma.  Gastroenterology. 2005;  128 (6) 1655-1667
  • 8 Meyers R L. Tumors of the liver in children.  Surg Oncol. 2007;  16 (3) 195-203
  • 9 Ward S C, Thung S N, Lim K H et al.. Hepatic progenitor cells in liver cancers from Asian children.  Liver Int. 2010;  30 (1) 102-111
  • 10 Torbenson M. Review of the clinicopathologic features of fibrolamellar carcinoma.  Adv Anat Pathol. 2007;  14 (3) 217-223
  • 11 Waxman S, Gilbert H S. A tumor-related vitamin B12 binding protein in adolescent hepatoma.  N Engl J Med. 1973;  289 (20) 1053-1056
  • 12 Wasman S, Gilbert H S. Characteristics of a novel serum vitamin-B12-binding protein associated with hepatocellular carcinoma.  Br J Haematol. 1974;  27 (2) 229-239
  • 13 Burger R L, Waxman S, Gilbert H S, Mehlman C S, Allen R H. Isolation and characterization of a novel vitamin B12-binding protein associated with hepatocellular carcinoma.  J Clin Invest. 1975;  56 (5) 1262-1270
  • 14 Waxman S, Liu C K, Schreiber C, Helson L. The clinical and physiological implications of hepatoma B12-binding proteins.  Cancer Res. 1977;  37 (6) 1908-1914
  • 15 Ashwell G, Morell A G. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins.  Adv Enzymol Relat Areas Mol Biol. 1974;  41 (0) 99-128
  • 16 Paradinas F J, Melia W M, Wilkinson M L et al.. High serum vitamin B12 binding capacity as a marker of the fibrolamellar variant of hepatocellular carcinoma.  Br Med J (Clin Res Ed). 1982;  285 (6345) 840-842
  • 17 van Tonder S, Kew M C, Hodkinson J, Metz J, Fernandes-Costa F. Serum vitamin B12 binders in South African blacks with hepatocellular carcinoma.  Cancer. 1985;  56 (4) 789-792
  • 18 Wheeler K, Pritchard J, Luck W, Rossiter M. Transcobalamin I as a “marker” for fibrolamellar hepatoma.  Med Pediatr Oncol. 1986;  14 (4) 227-229
  • 19 Kanai T, Takabayashi T, Kawano Y, Kuramochi S, Miyazawa N. A case of postoperative recurrence of fibrolamellar hepatocellular carcinoma with increased vitamin B12 binding capacity in a young Japanese female.  Jpn J Clin Oncol. 2004;  34 (6) 346-351
  • 20 Collier N A, Weinbren K, Bloom S R, Lee Y C, Hodgson H J, Blumgart L H. Neurotensin secretion by fibrolamellar carcinoma of the liver.  Lancet. 1984;  1 (8376) 538-540
  • 21 Ward S C, Huang J, Tickoo S K, Thung S N, Ladanyi M, Klimstra D S. Fibrolamellar carcinoma of the liver exhibits immunohistochemical evidence of both hepatocyte and bile duct differentiation.  Mod Pathol. 2010;  23 (9) 1180-1190
  • 22 Ichikawa T, Federle M P, Grazioli L, Madariaga J, Nalesnik M, Marsh W. Fibrolamellar hepatocellular carcinoma: imaging and pathologic findings in 31 recent cases.  Radiology. 1999;  213 (2) 352-361
  • 23 Kim T, Hori M, Onishi H. Liver masses with central or eccentric scar.  Semin Ultrasound CT MR. 2009;  30 (5) 418-425
  • 24 Vecchio F M, Fabiano A, Ghirlanda G, Manna R, Massi G. Fibrolamellar carcinoma of the liver: the malignant counterpart of focal nodular hyperplasia with oncocytic change.  Am J Clin Pathol. 1984;  81 (4) 521-526
  • 25 Terracciano L M, Tornillo L, Avoledo P, Von Schweinitz D, Kühne T, Bruder E. Fibrolamellar hepatocellular carcinoma occurring 5 years after hepatocellular adenoma in a 14-year-old girl: a case report with comparative genomic hybridization analysis.  Arch Pathol Lab Med. 2004;  128 (2) 222-226
  • 26 Farhi D C, Shikes R H, Silverberg S G. Ultrastructure of fibrolamellar oncocytic hepatoma.  Cancer. 1982;  50 (4) 702-709
  • 27 Xu Y H, Peters R L. Mitochondrial abnormalities in hepatocytes adjacent to fibrolamellar hepatocellular carcinoma.  J Tongji Med Univ. 1986;  6 (1) 26-30
  • 28 Haratake J, Scheuer P J. An immunohistochemical and ultrastructural study of the sinusoids of hepatocellular carcinoma.  Cancer. 1990;  65 (9) 1985-1993
  • 29 Shafizadeh N, Ferrell L D, Kakar S. Utility and limitations of glypican-3 expression for the diagnosis of hepatocellular carcinoma at both ends of the differentiation spectrum.  Mod Pathol. 2008;  21 (8) 1011-1018
  • 30 Abdul-Al H M, Wang G, Makhlouf H R, Goodman Z D. Fibrolamellar hepatocellular carcinoma: an immunohistochemical comparison with conventional hepatocellular carcinoma.  Int J Surg Pathol. 2010;  18 (5) 313-318
  • 31 Van Eyken P, Sciot R, Brock P, Casteels-Van Daele M, Ramaekers F C, Desmet V J. Abundant expression of cytokeratin 7 in fibrolamellar carcinoma of the liver.  Histopathology. 1990;  17 (2) 101-107
  • 32 Górnicka B, Ziarkiewicz-Wróblewska B, Wróblewski T et al.. Carcinoma, a fibrolamellar variant—immunohistochemical analysis of 4 cases.  Hepatogastroenterology. 2005;  52 (62) 519-523
  • 33 Klein W M, Molmenti E P, Colombani P M et al.. Primary liver carcinoma arising in people younger than 30 years.  Am J Clin Pathol. 2005;  124 512-518
  • 34 Durnez A, Verslype C, Nevens F et al.. The clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in hepatocellular carcinoma. A possible progenitor cell origin.  Histopathology. 2006;  49 (2) 138-151
  • 35 Yang X R, Xu Y, Shi G M et al.. Cytokeratin 10 and cytokeratin 19: predictive markers for poor prognosis in hepatocellular carcinoma patients after curative resection.  Clin Cancer Res. 2008;  14 (12) 3850-3859
  • 36 Zhuang P Y, Zhang J B, Zhu X D et al.. Two pathologic types of hepatocellular carcinoma with lymph node metastasis with distinct prognosis on the basis of CK19 expression in tumor.  Cancer. 2008;  112 (12) 2740-2748
  • 37 Trzpis M, McLaughlin P M, de Leij L M, Harmsen M C. Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule.  Am J Pathol. 2007;  171 (2) 386-395
  • 38 Yamashita T, Forgues M, Wang W et al.. EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma.  Cancer Res. 2008;  68 (5) 1451-1461
  • 39 Zenali M J, Tan D, Li W, Dhingra S, Brown R E. Stemness characteristics of fibrolamellar hepatocellular carcinoma: immunohistochemical analysis with comparisons to conventional hepatocellular carcinoma.  Ann Clin Lab Sci. 2010;  40 (2) 126-134
  • 40 Buckley A F, Burgart L J, Kakar S. Epidermal growth factor receptor expression and gene copy number in fibrolamellar hepatocellular carcinoma.  Hum Pathol. 2006;  37 (4) 410-414
  • 41 Orsatti G, Hytiroglou P, Thung S N, Ishak K G, Paronetto F. Lamellar fibrosis in the fibrolamellar variant of hepatocellular carcinoma: a role for transforming growth factor beta.  Liver. 1997;  17 (3) 152-156
  • 42 Komiya T, Tanigawa Y, Hirohashi S. Cloning of the gene gob-4, which is expressed in intestinal goblet cells in mice.  Biochim Biophys Acta. 1999;  1444 (3) 434-438
  • 43 Vivekanandan P, Micchelli S T, Torbenson M. Anterior gradient-2 is overexpressed by fibrolamellar carcinomas.  Hum Pathol. 2009;  40 (3) 293-299
  • 44 Li W, Tan D, Zenali M J, Brown R E. Constitutive activation of nuclear factor-kappa B (NF-kB) signaling pathway in fibrolamellar hepatocellular carcinoma.  Int J Clin Exp Pathol. 2010;  3 (3) 238-243
  • 45 Ding S F, Delhanty J D, Bowles L, Dooley J S, Wood C B, Habib N A. Infrequent chromosome allele loss in fibrolamellar carcinoma.  Br J Cancer. 1993;  67 (2) 244-246
  • 46 Ding S F, Habib N A, Dooley J, Wood C, Bowles L, Delhanty J D. Loss of constitutional heterozygosity on chromosome 5q in hepatocellular carcinoma without cirrhosis.  Br J Cancer. 1991;  64 (6) 1083-1087
  • 47 Orsatti G, Greenberg P D, Rolfes D B, Ishak K G, Paronetto F. DNA ploidy of fibrolamellar hepatocellular carcinoma by image analysis.  Hum Pathol. 1994;  25 (9) 936-939
  • 48 Lowichik A, Schneider N R, Tonk V, Ansari M Q, Timmons C F. Report of a complex karyotype in recurrent metastatic fibrolamellar hepatocellular carcinoma and a review of hepatocellular carcinoma cytogenetics.  Cancer Genet Cytogenet. 1996;  88 (2) 170-174
  • 49 Hany M A, Betts D R, Schmugge M et al.. A childhood fibrolamellar hepatocellular carcinoma with increased aromatase activity and a near triploid karyotype.  Med Pediatr Oncol. 1997;  28 (2) 136-138
  • 50 Moinzadeh P, Breuhahn K, Stützer H, Schirmacher P. Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade—results of an explorative CGH meta-analysis.  Br J Cancer. 2005;  92 (5) 935-941
  • 51 Marchio A, Pineau P, Meddeb M et al.. Distinct chromosomal abnormality pattern in primary liver cancer of non-B, non-C patients.  Oncogene. 2000;  19 (33) 3733-3738
  • 52 Wilkens L, Bredt M, Flemming P, Kubicka S, Klempnauer J, Kreipe H. Cytogenetic aberrations in primary and recurrent fibrolamellar hepatocellular carcinoma detected by comparative genomic hybridization.  Am J Clin Pathol. 2000;  114 (6) 867-874
  • 53 Kakar S, Chen X, Ho C et al.. Chromosomal changes in fibrolamellar hepatocellular carcinoma detected by array comparative genomic hybridization.  Mod Pathol. 2009;  22 (1) 134-141
  • 54 Terracciano L, Tornillo L. Cytogenetic alterations in liver cell tumors as detected by comparative genomic hybridization.  Pathologica. 2003;  95 (2) 71-82
  • 55 Koo S H, Ihm C H, Kwon K C, Park J W, Kim J M, Kong G. Genetic alterations in hepatocellular carcinoma and intrahepatic cholangiocarcinoma.  Cancer Genet Cytogenet. 2001;  130 (1) 22-28
  • 56 Wong N, Li L, Tsang K, Lai P B, To K F, Johnson P J. Frequent loss of chromosome 3p and hypermethylation of RASSF1A in cholangiocarcinoma.  J Hepatol. 2002;  37 (5) 633-639
  • 57 Lee J Y, Park Y N, Uhm K O, Park S Y, Park S H. Genetic alterations in intrahepatic cholangiocarcinoma as revealed by degenerate oligonucleotide primed PCR-comparative genomic hybridization.  J Korean Med Sci. 2004;  19 (5) 682-687
  • 58 Uhm K O, Park Y N, Lee J Y, Yoon D S, Park S H. Chromosomal imbalances in Korean intrahepatic cholangiocarcinoma by comparative genomic hybridization.  Cancer Genet Cytogenet. 2005;  157 (1) 37-41
  • 59 Homayounfar K, Gunawan B, Cameron S et al.. Pattern of chromosomal aberrations in primary liver cancers identified by comparative genomic hybridization.  Hum Pathol. 2009;  40 (6) 834-842
  • 60 Steenman M, Tomlinson G, Westerveld A, Mannens M. Comparative genomic hybridization analysis of hepatoblastomas: additional evidence for a genetic link with Wilms tumor and rhabdomyosarcoma.  Cytogenet Cell Genet. 1999;  86 (2) 157-161
  • 61 Hu J, Wills M, Baker B A, Perlman E J. Comparative genomic hybridization analysis of hepatoblastomas.  Genes Chromosomes Cancer. 2000;  27 (2) 196-201
  • 62 Weber R G, Pietsch T, von Schweinitz D, Lichter P. Characterization of genomic alterations in hepatoblastomas. A role for gains on chromosomes 8q and 20 as predictors of poor outcome.  Am J Pathol. 2000;  157 (2) 571-578
  • 63 Gray S G, Kytölä S, Matsunaga T, Larsson C, Ekström T J. Comparative genomic hybridization reveals population-based genetic alterations in hepatoblastomas.  Br J Cancer. 2000;  83 (8) 1020-1025
  • 64 Adesina A M, Nguyen Y, Guanaratne P et al.. FOXG1 is overexpressed in hepatoblastoma.  Hum Pathol. 2007;  38 (3) 400-409
  • 65 Weber R G, Boström J, Wolter M et al.. Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression.  Proc Natl Acad Sci U S A. 1997;  94 (26) 14719-14724
  • 66 Kannangai R, Vivekanandan P, Martinez-Murillo F, Choti M, Torbenson M. Fibrolamellar carcinomas show overexpression of genes in the RAS, MAPK, PIK3, and xenobiotic degradation pathways.  Hum Pathol. 2007;  38 (4) 639-644
  • 67 Kaposi-Novak P, Libbrecht L, Woo H G et al.. Central role of c-Myc during malignant conversion in human hepatocarcinogenesis.  Cancer Res. 2009;  69 (7) 2775-2782
  • 68 Duff E K, Clarke A R. Smad4 (DPC4)—a potent tumour suppressor?.  Br J Cancer. 1998;  78 (12) 1615-1619
  • 69 Kang Y K, Kim W H, Jang J J. Expression of G1-S modulators (p53, p16, p27, cyclin D1, Rb) and Smad4/Dpc4 in intrahepatic cholangiocarcinoma.  Hum Pathol. 2002;  33 (9) 877-883
  • 70 Torbenson M, Marinopoulos S, Dang D T et al.. Smad4 overexpression in hepatocellular carcinoma is strongly associated with transforming growth factor beta II receptor immunolabeling.  Hum Pathol. 2002;  33 (9) 871-876
  • 71 Poon T C, Wong N, Lai P B, Rattray M, Johnson P J, Sung J J. A tumor progression model for hepatocellular carcinoma: bioinformatic analysis of genomic data.  Gastroenterology. 2006;  131 (4) 1262-1270
  • 72 Vivekanandan P, Torbenson M. Epigenetic instability is rare in fibrolamellar carcinomas but common in viral-associated hepatocellular carcinomas.  Mod Pathol. 2008;  21 (6) 670-675
  • 73 Sandhu D S, Shire A M, Roberts L R. Epigenetic DNA hypermethylation in cholangiocarcinoma: potential roles in pathogenesis, diagnosis and identification of treatment targets.  Liver Int. 2008;  28 (1) 12-27
  • 74 Honda S, Haruta M, Sugawara W et al.. The methylation status of RASSF1A promoter predicts responsiveness to chemotherapy and eventual cure in hepatoblastoma patients.  Int J Cancer. 2008;  123 (5) 1117-1125
  • 75 Vivekanandan P, Daniel H, Yeh M M, Torbenson M. Mitochondrial mutations in hepatocellular carcinomas and fibrolamellar carcinomas.  Mod Pathol. 2010;  23 (6) 790-798
  • 76 Katzenstein H M, Krailo M D, Malogolowkin M H et al.. Fibrolamellar hepatocellular carcinoma in children and adolescents.  Cancer. 2003;  97 (8) 2006-2012
  • 77 Kakar S, Burgart L J, Batts K P, Garcia J, Jain D, Ferrell L D. Clinicopathologic features and survival in fibrolamellar carcinoma: comparison with conventional hepatocellular carcinoma with and without cirrhosis.  Mod Pathol. 2005;  18 (11) 1417-1423
  • 78 Epstein B E, Pajak T F, Haulk T L, Herpst J M, Order S E, Abrams R A. Metastatic nonresectable fibrolamellar hepatoma: prognostic features and natural history.  Am J Clin Oncol. 1999;  22 (1) 22-28
  • 79 Fong Y, Sun R L, Jarnagin W, Blumgart L H. An analysis of 412 cases of hepatocellular carcinoma at a Western center.  Ann Surg. 1999;  229 (6) 790-799, discussion 799–800
  • 80 Shaib Y, El-Serag H B. The epidemiology of cholangiocarcinoma.  Semin Liver Dis. 2004;  24 (2) 115-125
  • 81 Schnater J M, Aronson D C, Plaschkes J et al.. Surgical view of the treatment of patients with hepatoblastoma: results from the first prospective trial of the International Society of Pediatric Oncology Liver Tumor Study Group.  Cancer. 2002;  94 (4) 1111-1120
  • 82 Maniaci V, Davidson B R, Rolles K et al.. Fibrolamellar hepatocellular carcinoma: prolonged survival with multimodality therapy.  Eur J Surg Oncol. 2009;  35 (6) 617-621
  • 83 Llovet J M, Ricci S, Mazzaferro V SHARP Investigators Study Group et al. Sorafenib in advanced hepatocellular carcinoma.  N Engl J Med. 2008;  359 (4) 378-390

Stephen C WardM.D. Ph.D. 

Department of Pathology, Box 1194

The Mount Sinai Medical Center, One Gustave L. Levy Place, New York, NY 10029

Email: Stephen.Ward@mssm.edu

    >