Semin Neurol 2011; 31(2): 202-215
DOI: 10.1055/s-0031-1277990
© Thieme Medical Publishers

Posterior Reversible Encephalopathy Syndrome: A Review

Steven K. Feske1 , 2
  • 1Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
  • 2Division of Stroke, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
Further Information

Publication History

Publication Date:
17 May 2011 (online)

ABSTRACT

Encephalopathy due to reversible cerebral edema is an important cause of neurologic morbidity accompanying many disorders. Although controversy remains concerning the pathophysiologic trigger, the mechanism of this disorder ultimately depends on failure of the blood–brain barrier to maintain the compartmentalization of intravascular fluid. This failure of the blood–brain barrier depends primarily on the capillary hydrostatic pressure, under the influence of the systemic blood pressure, and on the integrity of the structures that make up the blood–brain barrier, most importantly the vascular endothelium, under the influence of various diseases and toxic medications. Although typical clinical contexts and presentations have been well defined, many patients have atypical features that pose a diagnostic challenge. Therefore, awareness of this clinical variability is important for prompt diagnosis. This review discusses the history and pathophysiology of posterior reversible encephalopathy syndrome and then addresses its clinical diagnosis and management.

REFERENCES

  • 1 Casey S O, Sampaio R C, Michel E, Truwit C L. Posterior reversible encephalopathy syndrome: utility of fluid-attenuated inversion recovery MR imaging in the detection of cortical and subcortical lesions.  AJNR Am J Neuroradiol. 2000;  21 (7) 1199-1206
  • 2 Oppenheimer B S, Fishberg A M. Hypertensive encephalopathy.  Arch Intern Med. 1928;  41 264-278
  • 3 Hinchey J, Chaves C, Appignani B et al.. A reversible posterior leukoencephalopathy syndrome.  N Engl J Med. 1996;  334 (8) 494-500
  • 4 Dillon W P, Rowley H. The reversible posterior cerebral edema syndrome.  AJNR Am J Neuroradiol. 1998;  19 (3) 591
  • 5 Chesley L C. Hypertensive disorders in pregnancy. New York: Appleton-Centery-Crofts; 1978
  • 6 Luft F C, Dietz R. Franz Volhard in historical perspective.  Hypertension. 1993;  22 (2) 253-256
  • 7 Byrom F B. The pathogenesis of hypertensive encephalopathy and its relation to the malignant phase of hypertension; experimental evidence from the hypertensive rat.  Lancet. 1954;  267 (6831) 201-211
  • 8 Tamaki K, Sadoshima S, Baumbach G L, Iadecola C, Reis D J, Heistad D D. Evidence that disruption of the blood-brain barrier precedes reduction in cerebral blood flow in hypertensive encephalopathy.  Hypertension. 1984;  6 (2 Pt 2) I75-I81
  • 9 Adams R D, Vander Eecken H M. Vascular diseases of the brain.  Annu Rev Med. 1953;  4 213-252
  • 10 McDowell F H. Cerebral ischemia and infarction. In: Beeson P B, McDermott W, Wyngaarden J B, eds. Cecil Textbook of Medicine. 15th ed. Philadelphia: WB Saunders; 1979: 794
  • 11 Schwartz R B, Jones K M, Kalina P et al.. Hypertensive encephalopathy: findings on CT, MR imaging, and SPECT imaging in 14 cases.  AJR Am J Roentgenol. 1992;  159 (2) 379-383
  • 12 Bartynski W S. Posterior reversible encephalopathy syndrome, part 1: fundamental imaging and clinical features.  AJNR Am J Neuroradiol. 2008;  29 (6) 1036-1042 Rev of imaging
  • 13 Bartynski W S. Posterior reversible encephalopathy syndrome, part 2: controversies surrounding pathophysiology of vasogenic edema.  AJNR Am J Neuroradiol. 2008;  29 (6) 1043-1049
  • 14 Chester E M, Agamanolis D P, Banker B Q, Victor M. Hypertensive encephalopathy: a clinicopathologic study of 20 cases.  Neurology. 1978;  28 (9 Pt 1) 928-939
  • 15 Bartynski W S, Zeigler Z, Spearman M P, Lin L, Shadduck R K, Lister J. Etiology of cortical and white matter lesions in cyclosporin-A and FK-506 neurotoxicity.  AJNR Am J Neuroradiol. 2001;  22 (10) 1901-1914
  • 16 Wilson S E, de Groen P C, Aksamit A J, Wiesner R H, Garrity J A, Krom R A. Cyclosporin A-induced reversible cortical blindness.  J Clin Neuroophthalmol. 1988;  8 (4) 215-220
  • 17 MacKenzie E T, Strandgaard S, Graham D I, Jones J V, Harper A M, Farrar J K. Effects of acutely induced hypertension in cats on pial arteriolar caliber, local cerebral blood flow, and the blood-brain barrier.  Circ Res. 1976;  39 (1) 33-41
  • 18 Hansson H A, Johansson B, Blomstrand C. Ultrastructural studies on cerebrovascular permeability in acute hypertension.  Acta Neuropathol. 1975;  32 (3) 187-198
  • 19 Apollon K M, Robinson J N, Schwartz R B, Norwitz E R. Cortical blindness in severe preeclampsia: computed tomography, magnetic resonance imaging, and single-photon-emission computed tomography findings.  Obstet Gynecol. 2000;  95 (6 Pt 2) 1017-1019
  • 20 Johansson B, Li C L, Olsson Y, Klatzo I. The effect of acute arterial hypertension on the blood-brain barrier to protein tracers.  Acta Neuropathol. 1970;  16 (2) 117-124
  • 21 Naidu K, Moodley J, Corr P, Hoffmann M. Single photon emission and cerebral computerised tomographic scan and transcranial Doppler sonographic findings in eclampsia.  Br J Obstet Gynaecol. 1997;  104 (10) 1165-1172
  • 22 Engelter S T, Petrella J R, Alberts M J, Provenzale J M. Assessment of cerebral microcirculation in a patient with hypertensive encephalopathy using MR perfusion imaging.  AJR Am J Roentgenol. 1999;  173 (6) 1491-1493
  • 23 Brubaker L M, Smith J K, Lee Y Z, Lin W, Castillo M. Hemodynamic and permeability changes in posterior reversible encephalopathy syndrome measured by dynamic susceptibility perfusion-weighted MR imaging.  AJNR Am J Neuroradiol. 2005;  26 (4) 825-830
  • 24 Zunker P, Ley-Pozo J, Louwen F, Schuierer G, Holzgreve W, Ringelstein E B. Cerebral hemodynamics in pre-eclampsia/eclampsia syndrome.  Ultrasound Obstet Gynecol. 1995;  6 (6) 411-415
  • 25 Zunker P, Happe S, Georgiadis A L et al.. Maternal cerebral hemodynamics in pregnancy-related hypertension. A prospective transcranial Doppler study.  Ultrasound Obstet Gynecol. 2000;  16 (2) 179-187
  • 26 Lassen N A. Cerebral blood flow and oxygen consumption in man.  Physiol Rev. 1959;  39 (2) 183-238
  • 27 Dethloff T J, Knudsen G M, Larsen F S. Cerebral blood flow autoregulation in experimental liver failure.  J Cereb Blood Flow Metab. 2008;  28 (5) 916-926
  • 28 Lucas S J, Tzeng Y C, Galvin S D, Thomas K N, Ogoh S, Ainslie P N. Influence of changes in blood pressure on cerebral perfusion and oxygenation.  Hypertension. 2010;  55 (3) 698-705
  • 29 Hernández M J, Brennan R W, Bowman G S. Autoregulation of cerebral blood flow in the newborn dog.  Brain Res. 1980;  184 (1) 199-202
  • 30 Pasternak J F, Groothuis D R. Autoregulation of cerebral blood flow in the newborn beagle puppy.  Biol Neonate. 1985;  48 (2) 100-109
  • 31 Tyszczuk L, Meek J, Elwell C, Wyatt J S. Cerebral blood flow is independent of mean arterial blood pressure in preterm infants undergoing intensive care.  Pediatrics. 1998;  102 (2 Pt 1) 337-341
  • 32 Pryds O, Edwards A D. Cerebral blood flow in the newborn infant.  Arch Dis Child Fetal Neonatal Ed. 1996;  74 (1) F63-F69
  • 33 Schwartz R B, Feske S K, Polak J F et al.. Preeclampsia-eclampsia: clinical and neuroradiographic correlates and insights into the pathogenesis of hypertensive encephalopathy.  Radiology. 2000;  217 (2) 371-376
  • 34 Beausang-Linder M, Bill A. Cerebral circulation in acute arterial hypertension—protective effects of sympathetic nervous activity.  Acta Physiol Scand. 1981;  111 (2) 193-199
  • 35 Olsson Y, Hossmann K A. Fine structural localization of exudated protein tracers in the brain.  Acta Neuropathol. 1970;  16 (2) 103-116
  • 36 McCrae K R, Samuels P, Schreiber A D. Pregnancy-associated thrombocytopenia: pathogenesis and management.  Blood. 1992;  80 (11) 2697-2714
  • 37 Schwartz R B, Bravo S M, Klufas R A et al.. Cyclosporine neurotoxicity and its relationship to hypertensive encephalopathy: CT and MR findings in 16 cases.  AJR Am J Roentgenol. 1995;  165 (3) 627-631
  • 38 Ay H, Buonanno F S, Schaefer P W et al.. Posterior leukoencephalopathy without severe hypertension: utility of diffusion-weighted MRI.  Neurology. 1998;  51 (5) 1369-1376
  • 39 Wright R R, Mathews K D. Hypertensive encephalopathy in childhood.  J Child Neurol. 1996;  11 (3) 193-196
  • 40 Bakshi R, Bates V E, Mechtler L L, Kinkel P R, Kinkel W R. Occipital lobe seizures as the major clinical manifestation of reversible posterior leukoencephalopathy syndrome: magnetic resonance imaging findings.  Epilepsia. 1998;  39 (3) 295-299
  • 41 Gijtenbeek J M, van den Bent M J, Vecht C J. Cyclosporine neurotoxicity: a review.  J Neurol. 1999;  246 (5) 339-346
  • 42 Feske S K, Sperling R A, Schwartz R B. Extensive reversible brain magnetic resonance lesions in a patient with HELLP syndrome.  J Neuroimaging. 1997;  7 (4) 247-250
  • 43 McKinney A M, Short J, Truwit C L et al.. Posterior reversible encephalopathy syndrome: incidence of atypical regions of involvement and imaging findings.  AJR Am J Roentgenol. 2007;  189 (4) 904-912
  • 44 Covarrubias D J, Luetmer P H, Campeau N G. Posterior reversible encephalopathy syndrome: prognostic utility of quantitative diffusion-weighted MR images.  AJNR Am J Neuroradiol. 2002;  23 (6) 1038-1048
  • 45 Schaefer P W, Buonanno F S, Gonzalez R G, Schwamm L H. Diffusion-weighted imaging discriminates between cytotoxic and vasogenic edema in a patient with eclampsia.  Stroke. 1997;  28 (5) 1082-1085
  • 46 Koch S, Rabinstein A, Falcone S, Forteza A. Diffusion-weighted imaging shows cytotoxic and vasogenic edema in eclampsia.  AJNR Am J Neuroradiol. 2001;  22 (6) 1068-1070
  • 47 Sengar A R, Gupta R K, Dhanuka A K, Roy R, Das K. MR imaging, MR angiography, and MR spectroscopy of the brain in eclampsia.  AJNR Am J Neuroradiol. 1997;  18 (8) 1485-1490
  • 48 Eichler F S, Wang P, Wityk R J, Beauchamp Jr N J, Barker P B. Diffuse metabolic abnormalities in reversible posterior leukoencephalopathy syndrome.  AJNR Am J Neuroradiol. 2002;  23 (5) 833-837
  • 49 Reece D E, Frei-Lahr D A, Shepherd J D et al.. Neurologic complications in allogeneic bone marrow transplant patients receiving cyclosporin.  Bone Marrow Transplant. 1991;  8 (5) 393-401
  • 50 Calhoun D A, Oparil S. Treatment of hypertensive crisis.  N Engl J Med. 1990;  323 (17) 1177-1183
  • 51 Vaughan C J, Delanty N. Hypertensive emergencies.  Lancet. 2000;  356 (9227) 411-417
  • 52 Blumenfeld J D, Laragh J H. Management of hypertensive crises: the scientific basis for treatment decisions.  Am J Hypertens. 2001;  14 (11 Pt 1) 1154-1167
  • 53 Wilson D J, Wallin J D, Vlachakis N D et al.. Intravenous labetalol in the treatment of severe hypertension and hypertensive emergencies.  Am J Med. 1983;  75 (4A) 95-102
  • 54 Oparil S, Aronson S, Deeb G M et al.. Fenoldopam: a new parenteral antihypertensive: consensus roundtable on the management of perioperative hypertension and hypertensive crises.  Am J Hypertens. 1999;  12 (7) 653-664
  • 55 Shusterman N H, Elliott W J, White W B. Fenoldopam, but not nitroprusside, improves renal function in severely hypertensive patients with impaired renal function.  Am J Med. 1993;  95 (2) 161-168
  • 56 Houston M. Hypertensive emergencies and urgencies: pathophysiology and clinical aspects.  Am Heart J. 1986;  111 (1) 205-210
  • 57 Eclampsia Trial Collaborative Group . Which anticonvulsant for women with eclampsia? Evidence from the Collaborative Eclampsia Trial.  Lancet. 1995;  345 (8963) 1455-1463
  • 58 Lucas M J, Leveno K J, Cunningham F G. A comparison of magnesium sulfate with phenytoin for the prevention of eclampsia.  N Engl J Med. 1995;  333 (4) 201-205
  • 59 Altman D, Carroli G, Duley L Magpie Trial Collaboration Group et al. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: a randomised placebo-controlled trial.  Lancet. 2002;  359 (9321) 1877-1890
  • 60 Esen F, Erdem T, Aktan D et al.. Effects of magnesium administration on brain edema and blood-brain barrier breakdown after experimental traumatic brain injury in rats.  J Neurosurg Anesthesiol. 2003;  15 (2) 119-125
  • 61 Esen F, Erdem T, Aktan D et al.. Effect of magnesium sulfate administration on blood-brain barrier in a rat model of intraperitoneal sepsis: a randomized controlled experimental study.  Crit Care. 2005;  9 (1) R18-R23
  • 62 Kaya M, Gulturk S, Elmas I et al.. The effects of magnesium sulfate on blood-brain barrier disruption caused by intracarotid injection of hyperosmolar mannitol in rats.  Life Sci. 2004;  76 (2) 201-212
  • 63 Euser A G, Bullinger L, Cipolla M J. Magnesium sulphate treatment decreases blood-brain barrier permeability during acute hypertension in pregnant rats.  Exp Physiol. 2008;  93 (2) 254-261
  • 64 Lam A M, Visco E, Ludbrook G. Influence of magnesium on cerebral blood flow autoregulation and CO2 reactivity in humans.  [Abstract] Anesthesiology. 2002;  96 A262
  • 65 Sherman R, Armory P, Moody P, Hope T, Mahajan R P. Effects of magnesium sulphate on cerebral haemodynamics in healthy volunteers: a transcranial Doppler study.  Br J Anaesth. 2003;  91 (2) 273-275
  • 66 James M F, Cronjé L. Pheochromocytoma crisis: the use of magnesium sulfate.  Anesth Analg. 2004;  99 (3) 680-686
  • 67 James M FM. Magnesium: an emerging drug in anaesthesia.  Br J Anaesth. 2009;  103 (4) 465-467
  • 68 O'Riordan J A. Pheochromocytomas and anesthesia.  Int Anesthesiol Clin. 1997;  35 (4) 99-127

Steven K FeskeM.D. 

Division of Stroke, Department of Neurology

Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115

Email: sfeske@partners.org

    >