Zusammenfassung
Ziel: Untersuchungen an Armamputierten konnten einen Zusammenhang zwischen Reorganisation
im primären sensomotorischen Kortex und Phantomschmerz zeigen. Die Spiegeltherapie
wird als nicht invasives Therapieverfahren zur Behandlung von Phantomschmerzen eingesetzt.
Ziel dieser Studie war die Untersuchung kortikaler Reorganisationsphänomene vor und
nach Spiegeltherapie bei Beinamputierten. Material und Methoden: Acht Beinamputierte absolvierten 12 Spiegeltherapiesitzungen, bei denen repetitive
Extensions- und Flexionsbewegungen der gesunden unteren Extremität durchgeführt wurden.
Vor der ersten und nach der letzten Therapiesitzung wurden fMRT-Messungen durchgeführt,
bei denen die funktionelle Organisation repetitiver Bewegungen im gesunden und amputierten
Sprunggelenk getestet wurde. Ergebnisse: Die mittlere Intensität des subjektiven Phantomschmerzes betrug vor der Spiegeltherapie
4,6 ± 3,1 auf einer visuellen Analogskala und verringerte sich auf 1,8 ± 1,7 (p = 0,04)
nach der Therapie. Es konnten keine konsistenten Aktivierungen des primären sensomotorischen
Kortex während der Bewegungen des Phantomsprunggelenks im Vergleich zur Ruhebedingung
nachgewiesen werden. Nach der Spiegeltherapie zeigten die Patienten erhöhte Aktivität
im rechten orbitofrontalen Kortex während Bewegungen des Phantomsprunggelenks. Der
Vergleich zwischen Bewegungen des gesunden und des Phantomsprunggelenks zeigte eine
signifikant höhere Aktivität im linken inferioren frontalen Kortex (Pars triangularis).
Schlussfolgerung: Diese Ergebnisse stellen den bisher bekannten Zusammenhang zwischen kortikaler Reorganisation
im primären sensomotorischen Kortex und Phantomschmerzen infrage und weisen auf die
Veränderungen im sogenannten „Motor-Netzwerk“ hin. Die Phantomschmerzreduktion nach
Spiegeltherapie wurde von einer erhöhten präfrontalen kortikalen Aktivität begleitet.
Abstract
Purpose: Phantom pain in upper limb amputees is associated with the extent of reorganization
in the primary sensorimotor cortex. Mirror visual feedback therapy has been shown
to improve phantom pain. We investigated the extent of cortical reorganization in
lower limb amputees and changes in neural activity induced by mirror therapy. Materials and Methods: Eight lower limb amputees underwent 12 sessions of MVFT and functional magnetic resonance
imaging (fMRI) of the brain before the first and after the last MVFT session. FMRI
sessions consisted of two runs in which subjects were instructed to perform repetitive
movement of the healthy and phantom ankle. Results: Before MVFT, the mean phantom pain intensity was 4.6 ± 3.1 on a visual analog scale
and decreased to 1.8 ± 1.7 (p = 0.04). We did not observe a consistent pattern of
cortical activation in primary sensorimotor areas during phantom limb movements. Following
MVFT, increased activity was obtained in the right orbitofrontal cortex during phantom
ankle movements. Comparison of cortical activity during movements of the phantom ankle
and the intact ankle showed significantly higher activity in the left inferior frontal
cortex (pars triangularis). Conclusion: These results question the known association between phantom pain and primary sensorimotor
reorganization and propose reorganizational changes involving multiple cortical areas
in lower limb amputees. Finally, reduction of phantom pain after mirror visual feedback
therapy was associated with increased prefrontal cortical activity during phantom
ankle movements.
Key words
MR functional imaging - neural networks - brain
References
1
Moller F, Ulmer S, Wolff S et al.
Cortical reorganization in children with connatal spastic hemiparesis – a functional
magnetic resonance imaging (FMRI) study.
Fortschr Röntgenstr.
2005;
177
1552-1561
2
Flor H, Birbaumer N.
Phantom limb pain: cortical plasticity and novel therapeutic approaches.
Curr Opin Anaesthesiol.
2000;
13
561-564
3
Yang T T, Gallen C, Schwartz B et al.
Sensory maps in the human brain.
Nature.
1994;
368
592-593
4
Elbert T, Flor H, Birbaumer N et al.
Extensive reorganization of the somatosensory cortex in adult humans after nervous
system injury.
Neuroreport.
1994;
5
2593-2597
5
Flor H, Elbert T, Knecht S et al.
Phantom-limb pain as a perceptual correlate of cortical reorganization following arm
amputation.
Nature.
1995;
375
482-484
6
Karl A, Birbaumer N, Lutzenberger W et al.
Reorganization of motor and somatosensory cortex in upper extremity amputees with
phantom limb pain.
J Neurosci.
2001;
21
3609-3618
7
Lotze M, Flor H, Grodd W et al.
Phantom movements and pain. An fMRI study in upper limb amputees.
Brain.
2001;
124
2268-2277
8
Chen R, Corwell B, Yaseen Z et al.
Mechanisms of cortical reorganization in lower-limb amputees.
J Neurosci.
1998;
18
3443-3450
9
Schwenkreis P, Pleger B, Cornelius B et al.
Reorganization in the ipsilateral motor cortex of patients with lower limb amputation.
Neurosci Lett.
2003;
349
187-190
10
McCabe C S, Haigh R C, Blake D R.
Mirror visual feedback for the treatment of complex regional pain syndrome (type 1).
Curr Pain Headache Rep.
2008;
12
103-107
11
Cacchio A, De Blasis E, De Blasis V et al.
Mirror therapy in complex regional pain syndrome type 1 of the upper limb in stroke
patients.
Neurorehabil Neural Repair.
2009;
23
792-799
12
Chan B L, Witt R, Charrow A P et al.
Mirror therapy for phantom limb pain.
N Engl J Med.
2007;
357
2206-2207
13
Michielsen M E, Selles R W, Geest J N et al.
Motor recovery and cortical reorganization after mirror therapy in chronic stroke
patients: a phase II randomized controlled trial.
Neurorehabil Neural Repair.
2011;
25
223-233
14
Altschuler E L, Wisdom S B, Stone van der L et al.
Rehabilitation of hemiparesis after stroke with a mirror.
Lancet.
1999;
353
2035-2036
15
Michielsen M E, Smits M, Ribbers G M et al.
The neuronal correlates of mirror therapy: an fMRI study on mirror induced visual
illusions in patients with stroke.
J Neurol Neurosurg Psychiatry.
2011;
82
393-398
16
MacIver K, Lloyd D M, Kelly S et al.
Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery.
Brain.
2008;
131
2181-2191
17
Giraux P, Sirigu A.
Illusory movements of the paralyzed limb restore motor cortex activity.
Neuroimage.
2003;
20
S107-S111
18
Rizzolatti G, Craighero L.
The mirror-neuron system.
Annu Rev Neurosci.
2004;
27
169-192
19
Buccino G, Binkofski F, Fink G R et al.
Action observation activates premotor and parietal areas in a somatotopic manner:
an fMRI study.
Eur J Neurosci.
2001;
13
400-404
20
Perani D, Fazio F, Borghese N A et al.
Different brain correlates for watching real and virtual hand actions.
Neuroimage.
2001;
14
749-758
21
Peyron R, Laurent B, Garcia-Larrea L.
Functional imaging of brain responses to pain. A review and meta-analysis (2000).
Neurophysiol Clin.
2000;
30
263-288
22
Rodgers W M, Hall C R, Blanchard C M et al.
Prediction of obligatory exercise by exercise-related imagery.
Psychol Addict Behav.
2001;
15
152-154
23
Flor H, Elbert T, Muhlnickel W et al.
Cortical reorganization and phantom phenomena in congenital and traumatic upper-extremity
amputees.
Exp Brain Res.
1998;
119
205-212
24
Roux F E, Lotterie J A, Cassol E et al.
Cortical areas involved in virtual movement of phantom limbs: comparison with normal
subjects.
Neurosurgery.
2003;
53
1342-1352
25
Kapreli E, Athanasopoulos S, Papathanasiou M et al.
Lower limb sensorimotor network: issues of somatotopy and overlap.
Cortex.
2007;
43
219-232
26
Taylor K S, Anastakis D J, Davis K D.
Cutting your nerve changes your brain.
Brain.
2009;
132
3122-3133
27
Rath J, Klinger N, Geissler A et al.
An fMRI Marker for Peripheral Nerve Regeneration.
Neurorehabil Neural Repair.
2011;
25
577-579
28
Nedelko V, Hassa T, Hamzei F et al.
Age-independent activation in areas of the mirror neuron system during action observation
and action imagery. A fMRI study.
Restor Neurol Neurosci.
2010;
28
737-747
29
Weeks S R, Tsao J W.
Incorporation of another person’s limb into body image relieves phantom limb pain:
a case study.
Neurocase.
2010;
16
461-465
30
Jahn K, Deutschlander A, Stephan T et al.
Brain activation patterns during imagined stance and locomotion in functional magnetic
resonance imaging.
Neuroimage.
2004;
22
1722-1731
31
Lotze M, Montoya P, Erb M et al.
Activation of cortical and cerebellar motor areas during executed and imagined hand
movements: an fMRI study.
J Cogn Neurosci.
1999;
11
491-501
32
Szameitat A J, Shen S, Sterr A.
Motor imagery of complex everyday movements. An fMRI study.
Neuroimage.
2007;
34
702-713
33
Olivetti B M, Palmiero M, Sestieri C et al.
An fMRI investigation on image generation in different sensory modalities: the influence
of vividness.
Acta Psychol.
2009;
132
190-200
34
Malouin F, Richards C L, Durand A et al.
Effects of practice, visual loss, limb amputation, and disuse on motor imagery vividness.
Neurorehabil Neural Repair.
2009;
23
449-463
35
Molenberghs P, Brander C, Mattingley J B et al.
The role of the superior temporal sulcus and the mirror neuron system in imitation.
Hum Brain Mapp.
2010;
31
1316-1326
36
Moulton E A, Pendse G, Morris S et al.
Capsaicin-induced thermal hyperalgesia and sensitization in the human trigeminal nociceptive
pathway: an fMRI study.
Neuroimage.
2007;
35
1586-1600
37
Halsband U, Lange R K.
Motor learning in man: a review of functional and clinical studies.
J Physiol Paris.
2006;
99
414-424
38
Fink G R, Marshall J C, Halligan P W et al.
The neural consequences of conflict between intention and the senses.
Brain.
1999;
122
497-512
39
Bantick S J, Wise R G, Ploghaus A et al.
Imaging how attention modulates pain in humans using functional MRI.
Brain.
2002;
125
310-319
40
Johnson-Frey S H, Maloof F R, Newman-Norlund R et al.
Actions or hand-object interactions? Human inferior frontal cortex and action observation.
Neuron.
2003;
39
1053-1058
41
Bookheimer S.
Functional MRI of language: new approaches to understanding the cortical organization
of semantic processing.
Annu Rev Neurosci.
2002;
25
151-188
42
Greenfield S A.
A noncholinergic action of acetylcholinesterase (AChE) in the brain: from neuronal
secretion to the generation of movement.
Cell Mol Neurobiol.
1991;
11
55-77
43
Diers M, Christmann C, Koeppe C et al.
Mirrored, imagined and executed movements differentially activate sensorimotor cortex
in amputees with and without phantom limb pain.
Pain.
2010;
149
296-304
44
Dechent P, Frahm J.
Functional somatotopy of finger representations in human primary motor cortex.
Hum Brain Mapp.
2003;
18
272-83
45
Schlamann M, Yoon M S, Maderwald S et al.
Effects of MRI on the electrophysiology of the motor cortex: a TMS study.
Fortschr Röntgenstr.
2009;
181
215-219
Dr. Stefan Seidel
Department of Neurology, Medical University of Vienna
Währinger Gürtel 18 – 20
1090 Vienna
Austria
Phone: + 43/1/4 04 00 31 20
Fax: + 43/1/4 04 00 31 41
Email: stefan.seidel@meduniwien.ac.at