Int J Sports Med 2011; 32(12): 905-911
DOI: 10.1055/s-0031-1284339
Review
© Georg Thieme Verlag KG Stuttgart · New York

Muscle Protein Turnover in Endurance Training: a Review

T. Seene
1   Institute of Exercise Biology and Physiotherapy, University of Tartu, Estonia
,
P. Kaasik
2   Department of Functional Morphology, University of Tartu, Estonia
,
K. Alev
2   Department of Functional Morphology, University of Tartu, Estonia
› Author Affiliations
Further Information

Publication History



accepted after revision 07 June 2011

Publication Date:
08 November 2011 (online)

Abstract

There has been much debate about skeletal muscle capacity to adapt to long-lasting endurance exercise. Exercise in the aerobic zone of metabolism does not result in hypertrophy of skeletal muscle fibres but increases their oxidative capacity. The duration and intensity of an exercise session determines the time period of depressed muscle protein synthesis and increased degradation rate during the recovery period after exercise. Protein turnover characterizes the renewal processes of muscle proteins and the functional capacity of muscle. The turnover rate of myofibrillar proteins is slow in comparison with mitochondrial proteins and depends on the oxidative capacity of muscle fibres. The turnover rate of myofibrillar proteins in the same muscle is different and is also different within the myosin molecule between myosin heavy and light chain isoforms. The turnover rate of muscle proteins in endurance training shows the adaptation of skeletal muscle to long-lasting exercise via remodelling of muscle structures. Adaptational coordination between myofibrillar and mitochondrial compartments shows the physiological role and adaptational capacity of skeletal muscle to endurance training. It is challenging to use muscle protein turnover for the purposes of monitoring the training process of endurance athletes, optimizing training programs and preventing overtraining.

 
  • References

  • 1 Abbiss CR, Lauren PB. Models to explain fatigue during prolonged endurance cycling. Sports Med 2005; 35: 865-898
  • 2 Alev K, Kaasik P, Pehme A, Aru M, Parring A-M, Elart A, Seene T. Physiological role of myosin light and heavy chain isoforms in fast- and slow-twitch muscles: effect of exercise. Biol Sport 2009; 26: 215-234
  • 3 Allen DL, Monke SR, Talmadge RJ, Roy RR, Edgerton VR. Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibres. J Appl Physiol. 1995 78. 1969-1976
  • 4 Allen DL, Roy RR, Edgerton VR. Myonuclear domains in muscle adaptation and disease. Muscle Nerve 1999; 22: 1350-1360
  • 5 Andreson J, Schjerling P, Saltin B. Muscle genes and athletic performance. Sci Am 2000; 283: 48-55
  • 6 Armstrong RB, Warren GL, Warren JA. Mechanisms of exercise-induced muscle fibre injury. Sports Med 1991; 12: 184-207
  • 7 Arslan S, Erdem S, Kilinç K, Sivri A, Tan E, Hasçelik HZ. Free radical changes in rat muscle tissue after exercise. Rheumatol Int 2001; 3: 109-112
  • 8 Aschenbach WG, Sakamoto K, Goodyear LJ. 5′adenosine monophosphate-activated protein kinase, metabolism and exercise. Sports Med 2004; 34: 91-103
  • 9 Baldwin KM, Haddad F. Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 2001; 90: 345-357
  • 10 Baldwin KM, Haddad F. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms. Am J Phys Med Rehabil 2002; 81: S40-S51
  • 11 Bechet D, Tassa A, Taillandier D, Cornbaret L, Attaix D. Lysosomal proteolysis in skeletal muscle. Int J Biochem Cell Biol 2005; 37: 2098-2114
  • 12 Bekedam MA, van Beek-Harmsen BJ, Boonstra A, van Mechelen W, Visser FC, van der Laarse WJ. Maximum rate of oxygen consumption related to succinate dehydrogenase activity in skeletal muscle fibres of chronic heart failure patients and controls. Clin Physiol Funct Imaging 2003; 23: 337-343
  • 13 Blomstrand E, Rådegran G, Saltin B. Maximum rate of oxygen uptake by human skeletal muscle in relation to maximal activities of enzymes in the Krebs cycle. J Physiol 1997; 501: 455-460
  • 14 Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 2001; 3: 1014-1019
  • 15 Bottinelli R. Functional heterogeneity of mammalian single muscle fibres: do myosin isoforms tell the whole story?. Pflugers Arch 2001; 443: 6-17
  • 16 Bottinelli R, Betto R, Schiaffino S, Reggiani C. Unloaded shortening velocity and myosin heavy chain and alkali light chain isoform composition in rat skeletal muscle fibres. J Physiol 1994; 478: 341-349
  • 17 Caiozzo VJ, Baker MJ, Huang K, Chou H, Wu YZ, Baldwin KM. Single-fibre heavy chain polymorphism: how many patterns and what proportions?. Am J Physiol 2003; 285: R570-R580
  • 18 Caiozzo VJ, Haddad F, Baker M, Mc Cue S, Baldwin KM. MHC polymorphism in rodent plantaris muscle: effects of mechanical overload and hypothyroidism. Am J Physiol 2000; 278: C709 -C717
  • 19 Carraro F, Stuart CA, Hartl WH, Rosenblatt J, Wolfe RR. Effect of exercise and recovery on muscle protein synthesis in human subjects. Am J Physiol 1990; 259: E470-E476
  • 20 Cheek D, Holt A, Hill D, Talbert J. Skeletal muscle cell mass and growth – A review: the concept of the DNA unit. Pediatr Res 1971; 3: 312-328
  • 21 Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med 2007; 37: 737-763
  • 22 Costill DL, Bowers L, Branam G, Sparks K. Muscle glycogen utilization during prolonged exercise on successive days. J Appl Physiol 1971; 31: 834-838
  • 23 Davids K, Baker J. Genes environment and sport performance: why the nature-nature dualism is no longer relevant. Sports Med 2007; 37: 961-980
  • 24 Degens H, Anderson RK, Alway SE. Capillarization in skeletal muscle of rats with cardiac hypertrophy. Med Sci Sports Exerc 2002; 34: 258-266
  • 25 Diffee GM, Haddad F, Herrick RE, Baldwin KM. Control of myosin heavy chain expression: interaction of hypothyroidism and hindlimb suspension. Am J Physiol 1991; 261: 1099-1106
  • 26 Di Meo S, Venditti P. Mitochondria in exercise-induced oxidative stress. Biol Signals Recept 2001; 10: 125-140
  • 27 Dirks A, Leeuwenburgh C. The role of apoptosis in age-related skeletal muscle atrophy. Sports Med 2005; 35: 473-483
  • 28 Earl CA, Laurent GJ, Everett AW, Bounin CM, Sparrow MP. Turnover rates of muscle protein in cardiac and skeletal muscles of dog, flow, rat and mouse: turnover rate related to muscle function. Aust J Exp Biol Med Sci 1978; 56: 265-277
  • 29 Edgerton VR, Roy RR. Regulation of skeletal muscle fibre size, shape and function. J Biomech 1991; 24: 123-133
  • 30 Flück M. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J Exp Biol 2006; 209: 2239-2248
  • 31 Flück M, Hoppeler H. Molecular basis of skeletal muscle plasticity – from gene to form and function. Rev Physiol Biochem Pharmacol 2003; 146: 159-216
  • 32 Glaser BW, You G, Zhang M, Medler S. Relative proportions of hybrid fibres are unaffected by 6 weeks of running exercise in mouse skeletal muscles. Exp Physiol 2010; 95: 211-221
  • 33 Gregorevic P, Plant DR, Stupka N, Lynch GS. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration. J Physiol 2004; 558: 549-560
  • 34 Gullen M, Landon D. The normal ultrastructure of skeletal muscle. In: Walton J, Karpati G, Hilton-Jones D. eds Disorders of Voluntary Muscle. New York: Churchill Livingstone; 1994: 87-137
  • 35 Hardie DG, Sakamoto K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology 2006; 21: 48-60
  • 36 Harris BA. The influence of endurance and resistance exercise on muscle capillarization in the elderly: a review. Acta Physiol Scand 2005; 185: 89-97
  • 37 Hayashibara T, Miyanishi T. Binding of the amino-terminal region of myosin alkali 1 light chain to actin and its effect on actin-myosin interaction. Biochemistry 1994; 33: 12821-12827
  • 38 Herrero A, Barja G. Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria. J Bioenerg Biomembr 2000; 32: 609-615
  • 39 Hickson RC, Rosenkoetter MA. Separate turnover of cytochrome c and myoglobin in the red types of skeletal muscle. Am J Physiol 1981; 241: C140-C144
  • 40 Holloszy JO, Booth FW. Biochemical adaptation to endurance exercise in muscle. Annu Rev Physiol 1976; 38: 273-291
  • 41 Hood DA. Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 2001; 90: 1137-1157
  • 42 Hood DA. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl Physiol Nutr Metab 2009; 34: 465-472
  • 43 Höök P, Li X, Sleep J, Hughes S, Larsson L. In vitro motility speed of slow myosin extracted from single soleus fibres from young and old rats. J Physiol 1999; 520: 463-471
  • 44 Hoppeler H, Billeter R. Conditions for oxygen and substrate transport in muscles in exercising mammals. J Exp Biol 1991; 160: 263-283
  • 45 Hoppeler H, Howald H, Conley K, Lindstedt S, Classen H, Vock P, Weibel E. Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol 1985; 59: 320-327
  • 46 Iaia FM, Hellsten Y, Nielsen JJ, Fernström M, Sahlin K, Bangsbo J. Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume. J Appl Physiol 2009; 106: 73-80
  • 47 Iaia FM, Thomassen M, Kolding H, Gunnarsson T, Wendell J, Rostgaard T, Nordsborg N, Krustrup P, Nybo L, Hellsten Y, Bangsbo J. Reduced volume but increased training intensity elevate muscle Na+/K+ pump alpha 1-subunit and NHE1 expression as well as short-term work capacity in humans. Am J Physiol 2008; 294: R966-R974
  • 48 Kadaja L, Eimre M, Paju K, Roosimaa M, Põdramägi T, Kaasik P, Pehme A, Orlova E, Mudist M, Peet N, Piirsoo A, Seene T, Gellerich FN, Seppet EK. Impaired oxidative phosphorylation in overtrained rat myocardium. Exp Clin Cardiol 2010; 15: e116-e127
  • 49 Karas RH, Williams RS. Molecular mechanisms of skeletal muscle adaptations to exercise. Trends Cardiovasc Med 1991; 341-346
  • 50 Kayar SR, Banchero N. Volume density and distribution of mitochondria in myocardial growth and hypertrophy. Respir Physiol 1987; 70: 275-286
  • 51 Kohn TA, Essen-Gustavsson B, Myburgh KH. Exercise pattern influences skeletal muscle hybrid fibres of runners and nonrunners. Med Sci Sports Exerc 2007; 39: 1977-1984
  • 52 Larsson L, Moss RL. Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J Physiol 1993; 472: 595-614
  • 53 Laursen PB. Training for intense exercise performance: high-intensity or high-volume training?. Scand J Med Sci Sports 2010; (Suppl) 2: 1-10 doi: DOI: 10.1111/j.1600-0838.2010.01184.x.
  • 54 Laursen P, Jenkins D. The scientific basis for big high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med 2002; 32: 53-73
  • 55 Lee SJ, McPherron AC. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 2001; 98: 9306-9311
  • 56 Ljubicic V, Joseph AM, Saleem A, Uguccioni G, Collu-Marchese M, Lai RY, Nguyen LM, Hood DA. Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochim Biophys Acta. 2010 1800. 223-234
  • 57 Mc Comas AJ. Skeletal Muscle Form and Function. Champaign: Human Kinetics; 1996
  • 58 Millward D, Waterlow J. Effect of nutrition on protein turnover in skeletal muscle. Fed Proc 1978; 37: 2283-2290
  • 59 Molnar AM, Alves AA, Pereira-da-Silva L, Macedo DV, Dabbeni-Sala F. Evaluation by blue native polyacrylamide electrophoresis colorimetric staining of the effects of physical exercise on the activities of mitochondrial complexes in rat muscle. Braz J Med Biol Res 2004; 37: 939-947
  • 60 Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 2004; 279: 49064-49073
  • 61 Muramatsu T, Okumura J. Whole-body protein turnover in chicks at early stages of growth. J Nutr 1985; 115: 483-490
  • 62 Nader GA. Concurrent strength and endurance training: from molecules to man. Med Sci Sports Exerc. 2006 38. 1965-1970
  • 63 Noakes TD. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med Sci Sports 2000; 10: 123-145
  • 64 Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 2009; 12: 86-90
  • 65 Pette D. Historical perspectives: Plasticity of mammalian skeletal muscle. J Appl Physiol 2001; 90: 1119-1124
  • 66 Pette D. The adaptative potential of skeletal muscle fibres. Can J Appl Physiol 2002; 27: 423-448
  • 67 Pette D. Training effects on the contractile apparatus. Acta Physiol Scand 1998; 162: 367-376
  • 68 Pette D, Staron RS. Transitions of muscle fibre phenotypic profiles. Histochem Cell Biol 2001; 115: 359-372
  • 69 Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 2008; 88: 1243-1276
  • 70 Ratel S, Duche P, Williams GA. Muscle fatigue during high-intensity exercise in children. Sports Med 2006; 36: 1031-1065
  • 71 Reichmann H, Wasl R, Simoneau JA, Pette D. Enzyme-activities of fatty acid oxidation and the respiratory chain in chronically stimulated fast-twitch muscle of the rabbit. Plugers Arch 1991; 418: 572-574
  • 72 Rennie M, Tipton K. Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu Rev Nutr 2000; 20: 457-483
  • 73 Rivero JL, Talmadge RJ, Edgerton VR. Interrelationships of myofibrillar ATPase activity and metabolic properties of myosin heavy chain-based fibre types in rat skeletal muscle. Histochem Cell Biol 1999; 111: 277-287
  • 74 Russ DW, Kent-Braun JA. Is skeletal muscle oxidative capacity decreased in old age?. Sports Med 2004; 34: 221-229
  • 75 Saks VA, Kaambre T, Sikk P, Eimre M, Orlova E, Paju K, Piirsoo A, Appaix F, Kay L, Regitz-Zagrosek V, Fleck E, Seppet E. Intracellular energetics units in red muscle cells. Biochem J 2001; 356: 643-657
  • 76 Saks VA, Kuznetsov AV, Vendelin M, Guerrero K, Guerrero Kay L, Seppet EK. Functional coupling as a basic mechansim of feedback regulation of cardiac energy metabolism. Mol Cell Biochem 2004; 256/257: 185-199
  • 77 Salo D, Donovan C, Davies K. HSP 70 and other possible heat schock or oxidative stress proteins are induced in skeletal muscle, heart and liver during exercise. Free Radic Biol Med 1991; 11: 239-246
  • 78 Schmalbruch H, Lewis DM. Dynamics of nuclei of muscle fibres and connective tissue cells in normal and denervated rat muscles. Muscle Nerve 2000; 23: 617-626
  • 79 Schreurs VVAM, Boekholt H, Koopmanschap R, Rotterdam W. Relative synthesis rate of individual muscle proteins: a new approach. Neth J Agr Sci 1985; 33: 297-302
  • 80 Schoenheimer R, Ratner S, Rittenberg D. Studies in protein metabolism. VII. The metabolism of tyrosine. J Biol Chem 1939; 127: 333-344
  • 81 Seene T, Alev K. Effect of muscular activity on the turnover rate of actin and myosin heavy and light chains in different types of skeletal muscle. Int J Sports Med 1991; 12: 204-207
  • 82 Seene T, Alev K, Kaasik P, Pehme A. Changes in fast-twitch muscle oxidative capacity and myosin isoforms modulation during endurance training. J Sports Med Phys Fitness 2007; 47: 124-132
  • 83 Seene T, Alev K, Kaasik P, Pehme A, Parring AM. Endurance training: volume dependent adaptational changes in myosin. Int J Sports Med 2005; 26: 815-821
  • 84 Seene T, Alev K, Pehme A. Effect of muscular activity on the turnover rate of actin and myosin heavy and light chains in different types of skeletal muscle. I. Changes in the turnover rate of myosin and actin during and after single-bout physical activity. Int J Sports Med 1986; 7: 287-290
  • 85 Seene T, Kaasik P, Alev K, Pehme A, Riso EM. Composition and turnover of contractile proteins in volume-overtrained skeletal muscle. Int J Sports Med 2004; 25: 438-445
  • 86 Seene T, Kaasik P, Pehme A, Alev K, Riso EM. The effect of glucocorticoids on the myosin heavy chain isoforms’ turnover in skeletal muscle. J Steroid Biochem Mol Biol 2003; 86: 201-206
  • 87 Seene T, Kaasik P, Umnova M. Structural rearrangements in contractile apparatus and resulting skeletal muscle remodelling: effect of exercise training. J Sports Med Phys Fitness 2009; 49: 410-423
  • 88 Seene T, Umnova M. Relations between the changes in the turnover rate of contractile proteins, activation of satellite cells and ultra-structural response of neuromuscular junctions in the fast-oxidative-glycolytic muscle fibres in endurance trained rats. Basic Appl Myology 1992; 1: 539-546
  • 89 Seene T, Umnova M, Kaasik P. The exercise myopathy. In: Lehmann M, Foster C, Gastmann U, Keizer H, Steinacker JM. eds Overload, Performance Incompetence, and Regeneration in Sport. NY: Kluwer Academic, Plenum Publishers; 1999: 119-130
  • 90 Seene T, Umnova M, Kaasik P, Alev K, Pehme A. Overtraining injuries in athletic population. In: Tiidus PM. ed Skeletal Muscle Damage and Repair. Champaign (IL): Human Kinetics; 2008: 173-184 305-307
  • 91 Seppet EK, Eimre M, Anmann T, Seppet E, Peet N, Käämbre T, Paju K, Piirsoo A, Kuznetsov AV, Vendelin M, Gellerich FN, Zierz S, Saks VA. Intracellular energetic units in healthy and diseased hearts. Exp Clin Cardiol 2005; 10: 173-183
  • 92 Seppet EK, Kaambre T, Sikk P, Tiivel T, Vija H, Tonkonogi M, Sahlin K, Kay L, Appaix F, Braun U, Eimre M, Saks VA. Functional complexes of mitochondria with Ca, Mg ATPases of myofibrils and sarcoplasmic reticulum in muscle cells. Biochim Biophys Acta 2001; 1504: 379-395
  • 93 Stephenson GM. Hybrid skeletal muscle fibres: a rare or common phenomenon?. Clin Exp Pharmacol Physiol 2001; 28: 692 -702
  • 94 Stepto N, Martin D, Fallon K, Hawley J. Metabolic demands of intense aerobic interval training in competitive cyclists. Med Sci Sports Exerc 2001; 33: 303-310
  • 95 Stevens L, Firinga C, Gohlsch B, Bastide B, Mounier Y, Pette D. Effects of unweighting and clenbuterol on myosin light and heavy chains in fast and slow muscles of rat. Am J Physiol 2000; 279: C1558-C1563
  • 96 Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 2004; 14: 395-403
  • 97 Sweeney HL, Kushmeric MJ, Mahuchi K, Sreter FA, Gerery J. Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated skeletal muscle fibres. J Biol Chem 1988; 263: 9034-9039
  • 98 Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 1986; 66: 710-771
  • 99 Tate CA, Bonner HW, Leslie SW. Calcium uptake in skeletal muscle mitochondria. II. The effects of long-term chronic and acute exercise. Eur J Appl Physiol 1978; 39: 117-122
  • 100 Thayer R, Collins J, Noble EG, Taylor AW. A decade of aerobic endurance training: histological evidence for fibre type transformation. J Sports Med Phys Fitness 2000; 40: 284-289
  • 101 Thomson DM, Winder WW. AMPK control of fat metabolism in skeletal muscle. Acta Physiol (Oxf) 2009; 196: 147-154
  • 102 Tipton K, Wolfe R. Exercise-induced changes in protein metabolism. Acta Physiol Scand 1998; 162: 377-387
  • 103 Tseng BS, Kasper CE, Edgerton VR. Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibres. Cell Tissue Res 1994; 275: 39-49
  • 104 Vendelin M, Berand N, Guerrero K, Andrienko T, Kuznetsov AV, Olivares J, Kay L, Saks VA. Mitochondrial regular arrangement in muscle cells: A “crystal-like” pattern. Am J Physiol 2005; 288: C757-C767
  • 105 van Wessel T, de Haan A, van der Laarse WJ. Jaspers RT. The muscle fibre type-fibre size paradox: hypertrophy or oxidative metabolism?. Eur J Appl Physiol 2010; 110: 665-694
  • 106 Wada M, Pette D. Relationships between alkali light-chain complement and myosin heavy-chain isoforms in single fast-twitch fibres of rat and rabbit. Eur J Biochem 1993; 214: 157-161
  • 107 Wahrmann JP, Winand R, Rieu M. Plasticity of skeletal myosin in endurance-trained rats (I). A quantitative study. Eur J Appl Physiol 2001; 84: 367-372
  • 108 Waterlow JC, Garlick PJ, Millward DJ. Protein Turnover in Mammalian Tissue and in the Whole Body. Amsterdam: North Holland Pub Co; 1978: 804
  • 109 Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol 2008; 105: 1462-1470
  • 110 Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee S-J. Induction of cachexia in mice by systemically administered myostatin. Science 2002; 296: 1486-1488