Klinische Neurophysiologie 2012; 43(01): 11-15
DOI: 10.1055/s-0031-1285904
Originalia
© Georg Thieme Verlag KG Stuttgart · New York

Transkranielle Stimulationsverfahren 2011

Transcranial Stimulation Procedures 2011
W. Paulus
1   Abteilung für Klinische Neurophysiologie, Universitätsmedizin Göttingen
› Author Affiliations
Further Information

Publication History

Publication Date:
25 August 2011 (online)

Zusammenfassung

Jüngere Arbeiten haben zu einem vertieften Verständnis transkranieller elektrischer und magnetischer Stimulationsverfahren beigetragen. Bei den transkranieller Magnetstimulation (TMS) wird im Grundlagenbereich vermehrt die Theta-Burst-Technik eingesetzt. Mit dieser gelingt es, mit weniger Reizen stärkere Nacheffekte im Vergleich zu repetitiven transkraniellen Stimulationsverfahren mit unmodulierten Reizabfolgemustern zu erzielen. Als weitere Sonderform kann die Quadro-Puls-Technik angesehen werden, die aufgrund des hohen technischen Aufwandes derzeit jedoch nur von einem Labor betrieben wird. Der Val-Met-Polymorphismus des BDNF-Gens scheint bei der Effizienz der Theta-Burst-Stimulation eine wesentliche Rolle zu spielen. Durch einfache Verlängerung der Stimulationsdauer lässt sich nicht eine beliebige Verlängerung der Nacheffekte erzielen, diese können sogar ins Gegenteil verkehrt werden. Dies gilt auch für die transkranielle Gleichstromstimulation (tDCS). An neuen Verfahren ist hier die transkranielle Rauschstromstimulation (tRNS) sowie Wechselstromstimulation (tACS) hinzugekommen. Im Bereich zwischen etwa 5 und 40 Hz werden hierdurch Phosphene, am ehesten retinal, erzeugt, im Bereich von 100 bis 250 Hz wahrscheinlich hochfrequente neuronale Oszillationen im sogenannten Ripplefrequenzbereich angeregt sowie neuerdings durch Stimulation im kHz-Bereich über eine Interferenz mit neuronalen Membranen Plastizität erzeugt.

Abstract

Recent research has contributed to a deeper understanding of transcranial electrical and magnetic stimulation procedures. In the case of transcranial magnetic stimulation (TMS) the theta burst technique is frequently used in the basic research field. In this way it is possible to achieve stronger after effects with less stimulations in comparison to repetitive transcranial stimulation procedures with an unmodulated stimulation sequence pattern. The quadro pulse technique can be considered as a further special procedure but because of its high technical requirements it is only used in the laboratory as yet. The Val-Met polymoprphism of the BDNF gene seems to play a major role in the efficacy of theta-burst stimulation. It is not pissible to achieve an arbitrary lengthening of the after effects simply by lengthening the duration of stimulation, this can in fact even have the opposite effect. This also holds for transcranial direct current stimulation (tDCS). Related new procedures include transcranial noise current stimulation (tRNS) and transcranial alternating current stimulation (tACS). In the region between about 5 and 50 Hz phosphenes, predominantly retinal are generated while in the region from 100 to 250 Hz probably high frequency neuronal oscillations in the so-called ripple frequency region and, more recently, by stimulation in the KHz region − via an interference with neuronal membrane plasticity − are created.

 
  • Literatur

  • 1 Rossi S, Hallett M, Rossini PM et al. Safety, ethical considerations and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009; 120 (12) 2008-2039
  • 2 Huang YZ, Edwards MJ, Rounis E et al. Theta burst stimulation of the human motor cortex. Neuron 2005; 45 (02) 201-206
  • 3 Hamada M, Hanajima R, Terao Y et al. Quadro-pulse stimulation is more effective than paired-pulse stimulation for plasticity induction of the human motor cortex. Clin Neurophysiol 2007; 118 (12) 2672-2682
  • 4 Hamada M, Terao Y, Hanajima R et al. Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. J Physiol 2008; 586 (16) 3927-3947
  • 5 Wankerl K, Weise D, Gentner R et al. L-type voltage-gated Ca2+ channels: a single molecular switch for long-term potentiation/long-term depression-like plasticity and activity-dependent metaplasticity in humans. J Neurosci 2010; 30 (18) 6197-6204
  • 6 Huang YZ, Rothwell JC, Chen RS et al. The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clin Neurophysiol 2011; 122 (05) 1011-1018
  • 7 Gentner R, Wankerl K, Reinsberger C et al. Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: evidence of rapid polarity-reversing metaplasticity. Cereb Cortex 2008; 18 (09) 2046-2053
  • 8 Jung P, Ziemann U. Homeostatic and nonhomeostatic modulation of learning in human motor cortex. J Neurosci 2009; 29 (17) 5597-5604
  • 9 Paulus W. Transcranial stimulation techniques: which genetics is the best for which purpose?. J Physiol 2011; in press
  • 10 Nakamura K, Enomoto H, Hanajima R et al. Quadri-pulse stimulation (QPS) induced LTP/LTD was not affected by Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene. Neurosci lett 2011; 487 (03) 264-267
  • 11 Thielscher A, Opitz A, Windhoff M. Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. NeuroImage 2011; 54 (01) 234-243
  • 12 Opitz A, Windhoff M, Heidemann RM et al. How the brain tissue shapes the electric field induced by transcranial magnetic stimulation. NeuroImage 2011; in press
  • 13 O’Reardon JP, Solvason HB, Janicak PG et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol psychiat 2007; 62 (11) 1208-1216
  • 14 Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000; 527 Pt 3 633-639
  • 15 Nitsche MA, Cohen LG, Wassermann EM et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul 2008; 1 (03) 206-223
  • 16 Fritsch B, Reis J, Martinowich K et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 2010; 66 (02) 198-204
  • 17 Gamboa OL, Antal A, Moliadze V et al. Simply longer is not better: reversal of theta burst after-effect with prolonged stimulation. Exp Brain Res 2010; 204 (02) 181-187
  • 18 Nitsche MA, Jaussi W, Liebetanz D et al. Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology 2004; 29 (08) 1573-1578
  • 19 Bikson M, Datta A, Rahman A et al. Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode’s position and size. Clin Neurophysiol 2010; 121 (12) 1976-1978
  • 20 Ferrucci R, Bortolomasi M, Vergari M et al. Transcranial direct current stimulation in severe, drug-resistant major depression. J affect disorders 2009; 118 (1–3) 215-219
  • 21 Antal A, Boros K, Poreisz C et al. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul 2008; 1 (02) 97-105
  • 22 Terney D, Bergmann I, Poreisz C et al. Pergolide Increases the Efficacy of Cathodal Direct Current Stimulation to Reduce the Amplitude of Laser-Evoked Potentials in Humans. J Pain Symptom Manage. 2008
  • 23 Buzsaki G, Horvath Z, Urioste R et al. High-frequency network oscillation in the hippocampus. Science New York, NY 1992; 256 (5059) 1025-1027
  • 24 Chaieb L, Antal A, Paulus W. High Frequency Stimulation Impacts on Motor Cortex Excitability. Restor neurol neuros 2011; in press
  • 25 Kirson ED, Dbaly V, Tovarys F et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proceedings of the National Academy of Sciences of the United States of America 2007; 104 (24) 10152-10157
  • 26 Tufail Y, Matyushov A, Baldwin N et al. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 2010; 66 (05) 681-694
  • 27 Stemer AB, Huisa BN, Zivin JA. The evolution of transcranial laser therapy for acute ischemic stroke, including a pooled analysis of NEST-1 and NEST-2. Curr Cardiol Rep 2010; 12 (01) 29-33
  • 28 Antal A, Polania R, Schmidt-Samoa C et al. Transcranial direct current stimulation over the primary motor cortex during fMRI. NeuroImage 2011;
  • 29 Lang N, Siebner HR, Ward NS et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?. Eur J Neurosci 2005; 22 (02) 495-504
  • 30 Stagg CJ, Best JG, Stephenson MC et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci 2009; 29 (16) 5202-5206
  • 31 Binkofski F, Loebig M, Jauch-Chara K et al. Brain Energy Consumption Induced by Electrical Stimulation Promotes Systemic Glucose Uptake. Biol psychiat 2011;
  • 32 Polania R, Paulus W, Antal A et al. Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study. NeuroImage 2011; 54 (03) 2287-2296
  • 33 Polania R, Nitsche MA, Paulus W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum brain mapp. 2010