Subscribe to RSS
DOI: 10.1055/s-0031-1289554
BF3×OEt2-Catalyzed
Reaction of Donor-Acceptor Cyclobutanes with
Terminal
Alkynes: Single-Step Access to 2,3-Dihydrooxepines
Publication History
Publication Date:
25 October 2011 (online)

Abstract
In the presence of BF3˙OEt2 cyclobutane-1,1-diesters undergo a reaction with terminal alkynes to quickly access dihydrooxepines.
Key words
donor-acceptor cyclobutanes - oxepine - alkynes - Lewis acid - [4+2] cycloaddition
- Supporting Information for this article is available online:
- Supporting Information
- For reviews on cyclopropane chemistry, see:
- 1a
Wenkert E. Acc. Chem. Res. 1980, 13: 27 - 1b
Reissig H.-U. Top. Curr. Chem. 1988, 144: 73 - 1c
Reissig H.-U. Chem. Rev. 2003, 103: 1151 - 1d
Yu M.Pagenkopf BL. Tetrahedron 2005, 61: 321 - 1e
De Simone F.Waser J. Synthesis 2009, 3353 - 1f
Carson CA.Kerr MA. Chem. Soc. Rev. 2009, 38: 3051 - For rearrangement reactions of cyclopropanes, see:
- 1g
Hofmann B.Reissig H.-U. Synlett 1993, 27 - 1h
Hofmann B.Reissig H.-U. Chem. Ber. 1994, 127: 2327 - 1i
Brand C.Rauch G.Zanoni M.Dittrich B.Werz DB. J. Org. Chem. 2009, 74: 8779 - 1j
Schneider TF.Kaschel J.Awan SI.Dittrich B.Werz DB. Chem. Eur. J. 2010, 16: 11276 - 1k
Schneider TF.Werz DB. Org. Lett. 2011, 13: 1848 - For selected examples, see:
- 2a
Young IS.Kerr MA. Angew. Chem. Int. Ed. 2003, 42: 3023 - 2b
Yu M.Pagenkopf BL. Org. Lett. 2003, 5: 5099 - 2c
Young IS.Kerr MA. Org. Lett. 2004, 6: 139 - 2d
Ganton MD.Kerr MA. J. Org. Chem. 2004, 69: 8554 - 2e
Pohlhaus PD.Johnson JS. J. Org. Chem. 2005, 70: 1057 - 2f
Pohlhaus PD.Johnson JS. J. Am. Chem. Soc. 2005, 127: 16014 - 2g
Lebold TP.Carson CA.Kerr MA. Synlett 2006, 364 - 2h
Morra NA.Morales CL.Bajtos B.Wang X.Jang H.Wang J.Yu M.Pagenkopf BL. Adv. Synth. Catal. 2006, 348: 2385 - 2i
Sapeta K.Kerr MA. J. Org. Chem. 2007, 72: 8597 - 2j
Bajtos B.Yu M.Zhao H.Pagenkopf BL. J. Am. Chem. Soc. 2007, 129: 9631 - 2k
Pohlhaus PD.Sanders SD.Parson AT.Li W.Johnson JS. J. Am. Chem. Soc. 2008, 130: 8642 - 2l
Parson PD.Campbell MJ.Johnson JS. Org. Lett. 2008, 10: 2541 - 2m
Parsons AT.Johnson JS. J. Am. Chem. Soc. 2009, 131: 3122 - 2n
Moustafa MMAR.Pagenkopf BL. Org. Lett. 2010, 12: 3168 - 2o
De Simone F.Gertsch J.Waser J. Angew. Chem. Int. Ed. 2010, 49: 5767 - 2p
Smith AG.Slade MC.Johnnson JS. Org. Lett. 2011, 13: 1996 - 2q
De Simone F.Waser J. Synlett 2011, 589 - For selected examples, see:
- 3a
Carson CA.Kerr MA. Angew. Chem. Int. Ed. 2006, 45: 6560 - 3b
Young IS.Kerr MA. J. Am. Chem. Soc. 2007, 129: 1465 - 3c
Kalidindi S.Jeong WB.Schall A.Bandichhor R.Nosse B.Reiser O. Angew. Chem. Int. Ed. 2007, 46: 6361 - 3d
Morales CL.Pagenkopf BL. Org. Lett. 2008, 10: 157 - 3e
Leduc AB.Kerr MA. Angew. Chem. Int. Ed. 2008, 47: 7945 - 3f
Bajtos B.Pagenkopf BL. Eur. J. Org. Chem. 2009, 1072 - 3g
Carson CA.Kerr MA. Org. Lett. 2009, 11: 777 - 3h
Karadeolian A.Kerr MA. Angew. Chem. Int. Ed. 2010, 49: 1133 - 3i
Jung ME.Chang JL. Org. Lett. 2010, 12: 2962 - 4a
Moustafa MMAR.Pagenkopf BL. Org. Lett. 2010, 12: 4732 - 4b
Moustafa MMAR.Stevens AC.Machin BP.Pagenkopf BL. Org. Lett. 2010, 12: 4736 - 4c
Stevens AC.Palmer C.Pagenkopf BL. Org. Lett. 2011, 13: 1528 - 5a
Shimada S.Saigo K.Nakamura H.Hasegawa M. Chem. Lett. 1991, 20: 1149 - 5b
Matsuo J.-i.Sasaki S.Tanaka H.Ishibashi H. J. Am. Chem. Soc. 2008, 130: 11600 - 5c
Parsons AT.Johnson JS. J. Am. Chem. Soc. 2009, 131: 14202 - 5d
Matsuo J.-i.Sasaki S.Hoshikawa T.Ishibashi H. Org. Lett. 2009, 11: 3822 - 5e
Allart EA.Christie SDR.Pritchard GJ.Elsegood MRJ. Chem. Commun. 2009, 7339 - 5f
Matsuo J.-i.Okado R.Ishibashi H. Org. Lett. 2010, 12: 3266 - 5g
Negishi S.Ishibashi H.Matsuo J.-i. Org. Lett. 2010, 12: 4984 - 6a
Yadav VK.Sriramurthy V. Angew. Chem. Int. Ed. 2004, 43: 2669 - 6b
Qi X.Ready JM. Angew. Chem. Int. Ed. 2008, 47: 1 - 6c
Matsuo J.-i.Negishi S.Ishibashi H. Tetrahedron Lett. 2009, 50: 5831 - 6d
Matsuo J.-i.Sasaki S.Hoshikawa T.Ishibashi H. Chem. Commun. 2010, 46: 934 - For selected examples of seven-membered oxacyclic-containing natural products, see:
- 7a
Rastetter WH.Chancellor T.Richard TJ. J. Org. Chem. 1982, 47: 1509 - 7b
Zamarano G.Catalán CAN.Diaz JG.Herz W. Phytochemistry 1995, 38: 1257 - 7c
Bugni TS.Bernan VS.Greenstein M.Janso JE.Maiese WM.Mayne CL.Ireland CM. J. Org. Chem. 2003, 68: 2014 - 7d
Ankisetty S.ElSohly HN.Li X.-C.Khan SI.Tekwani BL.Smillie T.Walker L. J. Nat. Prod. 2006, 69: 692 - 7e
Kim S.Chin Y.-W.Su B.-N.Riswani S.Kardono LBS.Afriastini JJ.Chai H.Farnsworth NR.Cordell GA.Swanson SM.Kinghorn AD. J. Nat. Prod. 2006, 69: 1769 - 7f
Liermann JC.Kolshorn H.Opatz T.Thines E.Anke H. J. Nat. Prod. 2009, 72: 1905 - 7g
Bruder M.Haseler PL.Muscarella M.Lewis M.Moody CJ. J. Org. Chem. 2010, 75: 353 - 7h
Wang Y.Zheng Z.Liu S.Zhang H.Li E.Guo L.Che Y. J. Nat. Prod. 2010, 73: 920
References and Notes
Lewis acids screened included: Yb(OTf)3, Sc(OTf)3, Zn(OTf)2, ZnBr2, MgCl2, MgBr2, InBr3, TiCl4, Cu(OTf)2, and BiCl3 at temperatures ranging from 0 ˚C to refluxing and at ambient pressure to 1103 bar in a high-pressure reactor.
9
Representative
Procedure for the Preparation of 4a
To a solution
of cyclobutane 1 (105 mg, 0.43 mmol, 1
equiv) and phenylacetylene (50 µL, 0.49 mmol, 1.1 equiv)
in DCE (6 mL, 0.1 M) was added BF3˙OEt2 (55 µL,
0.43 mmol, 1 equiv). A reflux condenser was quickly attached, and
the flask was placed in a preheated oil bath. After complete consumption
of the cyclobutane as indicated by TLC (15 min), the reaction mixture
was poured into a separatory funnel containing a half-saturated
solution of NaHCO3. The aqueous phase was extracted with
CH2Cl2 (3 × 5 mL),
and the combined organic extracts were washed with brine, dried over
MgSO4, filtered through a pad of Celite, and concentrated
in vacuo. The crude reaction product was purified by flash column
chromatography (hexanes-EtOAc = 4:1) to provide
the corresponding addition-rearrangement product 4a (79 mg, 53%) as a yellow oil. R
f
= 0.49
(hexanes-EtOAc = 4:1). ¹H
NMR (600 MHz, CDCl3): δ = 7.56-7.55 (m,
2 H), 7.31-7.29 (m, 2 H), 7.27-7.25 (m, 1 H),
5.72 (d, J = 8.8
Hz, 1 H), 5.53 (d, J = 8.8
Hz, 1 H), 4.32 (app t, J = 4.1
Hz, 2 H), 4.19 (q, J = 4.0
Hz, 4 H), 3.55 (t, J = 7.9 Hz,
1 H), 2.73 (d, J = 8.2
Hz, 2 H), 2.62 (app t, J = 4.1
Hz, 2 H), 1.25 (t, J = 7.0
Hz, 6 H). ¹³C NMR (100 MHz, CDCl3): δ = 169.0(2),
157.4, 137.5, 137.0, 128.3 (2), 128.1, 125.3 (2), 122.1, 99.1, 69.0,
61.5 (2), 51.0, 38.8, 37.1, 14.1 (2). HRMS: m/z calcd
for C20H24O5: 344.1624; found:
344.1617.