Synlett 2011(18): 2759-2760  
DOI: 10.1055/s-0031-1289560
SPOTLIGHT
© Georg Thieme Verlag Stuttgart ˙ New York

Sodium Sulfide

Fei-Ping Ma*
The College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang 050016, P. R. of China
e-Mail: mafp0312@163.com;

Further Information

Publication History

Publication Date:
25 October 2011 (online)

Biographical Sketches

Fei-Ping Ma was born in 1988 in Shijiazhuang, Hebei Province, P. R. of China. She graduated from the Huihua College of Heibei Normal University in 2010 and received her B.Sc. degree in chemistry. Presently she is working as a postgraduate towards her M.Sc. under the supervision of Professor Zhan-Hui Zhang at the Hebei Normal University. Her research interest focuses on the development of new synthetic methodologies of heterocyclic compounds.

Introduction

Sodium sulfide is pink to yellowish solid with a rotten egg-like odor. It is readily soluble in water, slightly soluble in alcohol and insoluble in ether. Anhydrous sodium sulfide can ignite spontaneously when exposed to air. [¹] It is used in chemical manufacturing as a sulfonation and sulfomethylation agent. It is used in the production of rubber chemicals, sulfur dyes, and other chemical compounds. It has also been used as a reducer for the reduction of nitro compounds to the corresponding amines. [²] It was found to be useful for the conversion of carboxylic acids into thioacids [³] and alkenoyl ketene dithioacetals into the corresponding [5+1]-annulation products [4] as well as for the synthesis of thiofuranose, [5] cyclic dithiocarbonates, [6] tetrahydrothiophene derivatives, [7] 4-bromo-2-nitrobenzenethiol, [8] a-lipoic acid, [9] thieno[2,3-c]pyrazoles, [¹0] unsaturated thiacrown ethers, [¹¹] thieno[3,2-c]cinnoline, [¹²] monomeric cyclic diketosulfides, [¹³] thiophenes, [¹4] 2H-thio­pyran compounds, [¹5] 4H-thiochromen-4-ones [¹6] and benzo[b]thiophenes. [¹7] It can also act as an atom-economical inorganic nucleophile in transition-metal-catalyzed allyl­ation substitutions. [¹8] Willgerodt-Kindler reaction between anilines and benzaldehydes has also been achieved by the use of Na2S˙9H2O as a base catalyst. [¹9]

Sodium sulfide is commercially available and it can be readily prepared by reduction of Na2SO4 with carbon or through a solid-gas reaction of a sulfidizing gas mixture of COS, CS2, and S2 with the reactant of Na2CO3. [²0]

Abstracts

(A) Thionation of Carbonyl Compounds: Salama and co-workers have found that a combination of tetrachlorosilane and sodium sulfide in acetonitrile is an efficient thionating reagent for aromatic aldehydes to afford the corresponding thioaldehydes as trimers in good yields in the absence of catalysis. Under these mild conditions α,β-unsaturated ketones reacted with SiCl4/Na2S in the presence of a catalytic amount of CoCl2˙6H2O to give the respective disulfides via β-mercapto ketones. [²¹]

(B) Regioselective Ring Opening of Epoxides: Na2S can be applied as a mild sulfur nucleophile for regioselective ring opening of epoxides to give the corresponding bis[β-hydroxyalkyl]sulfides in the presence of poly[N-(2-aminoethyl)acrylamido]trimethyl ammonium chloride resin as a phase-transfer catalyst. [²²] The reaction of 2,2-bis(trifluoromethyl)oxiranes with aqueous solution of Na2S leads to the formation of S[CH2C(CF3)2OH]2. [²³]

(C) Divinylsulfides: A convenient and practical method for the direct synthesis of bis(arylvinyl)sulfides by the addition of sodium sulfide to arylacetylenes has been developed. These sulfides can be converted chemoselectively into the sulfoxides and sulfones. [²4]

(D) 2-Trifluoromethyl Benzothiophenes: Li et al. reported a practical protocol for the selective synthesis of 2-trifluoromethyl benzothiophenes by copper-catalyzed thiolation annulation reaction of 1,4-dihalides with Na2S. This protocol allows the formation of two C-S bonds in a one pot reaction through the ­thiolation annulation of various 1,4-dihalides, including less active dichlorides. [²5]

(E) Substituted 2,3,6,7-Tetrahydrothiopyrano[2,3-b]thiopyran-4,5-diones: Pan et al. reported a one-pot approach for the synthesis of disubstituted bicyclic thia-heterocycles via formal double [5+1] annulation of dialkenoylketene dithioacetals using sodium sulfide nonahydrate in DMF. [²6]

(F) Symmetrical Alkyl Disulfides: A mild and practical method for the synthesis of symmetrical alkyl disulfides from alkyl halides and a mixture of Na2S with sulfur using didecyldimethylammonium bromide (DDAB) as a phase-transfer catalyst has been developed. [²7] The reactivity order was found to be: benzyl halide > primary alkyl halide > secondary alkyl halide > tertiary alkyl halide > aryl halide.

(G) Angular Anthrathiophenediones: In addition to the above cases, the cyclocondensation of available vic-alkynylchloroanthraquinones with Na2S is a convenient method for the synthesis of angular anthrathiophenediones. [²8]

    References

  • 1 Young JA. J. Chem. Edu.  2009,  86:  919 
  • 2a Akue-Gedu R. Gautret P. Lelieur J.-P. Rigo B. Synthesis  2007,  3319 
  • 2b Zimmermann V. Müller R. Bräse S. Synlett  2008,  278 
  • 3 EI-Faham A. Khattab SN. Synlett  2009,  886 
  • 4 Pan L. Liu Q. Synlett  2011,  1073 
  • 5 Qing F.-L. Zheng F. Synlett  2011,  1052 
  • 6 Crivillers N. Oxtoby NS. Mas-Torrent M. Veciana J. Rovira C. Synthesis  2007,  1621 
  • 7 Periasamy M. Ramani G. Muthukumaragopal GP. Synthesis  2009,  1739 
  • 8 Pirat C. Ultré V. Lebegue N. Berthelot P. Yous S. Carato P. Synthesis  2011,  480 
  • 9 Kaku H. Okamoto N. Nishii T. Horikawa M. Tsunoda T. Synthesis  2010,  2931 
  • 10 Eller GA. Vilkauskaitè G. Arbačiauskienè E. Sačkus A. Holzer W. Synth. Commun.  2011,  41:  541 
  • 11 Sun D.-Q. Yang J.-K. Synthesis  2011,  2454 
  • 12 Vinogradova OV. Sorokoumov VN. Balova IA. Tetrahedron Lett.  2009,  50:  6358 
  • 13 Miyahara Y. J. Org. Chem.  2006,  71:  6516 
  • 14 Thomae D. Kirsch G. Seck P. Synthesis  2007,  1027 
  • 15 Banerji A. Biswas PK. Bandyopadhyay D. Gupta M. Prangé T. Neuman A. Phosphorus, Sulfur Silicon Relat. Elem.  2009,  184:  3199 
  • 16 Willy B. Müller TJJ. Synlett  2009,  1255 
  • 17 Saito M. Yamamoto T. Osaka I. Miyazaki E. Takimiya K. Kuwabara H. Ikeda M. Tetrahedron Lett.  2010,  51:  5277 
  • 18 Zheng SC. Huang WQ. Gao N. Cui RM. Zhang M. Zhao XM. Chem. Commun.  2011,  47:  6969 
  • 19 Okamoto K. Yamamoto T. Kanbara T. Synlett  2007,  2687 
  • 20 Güler H. Kurtuluş F. Kadan å. Morkan A. Akin S. Phosphorus, Sulfur Silicon Relat. Elem.  2006,  181:  1371 
  • 21 Salama TA. El-Ahl A.-AS. Elmorsy SS. Khalil A.-GM. Ismail MA. Tetrahedron Lett.  2009,  50:  5933 
  • 22 Mahdavi H. Tamami B. Phosphorus, Sulfur Silicon Relat. Elem.  2005,  180:  1929 
  • 23 Petrov VA. Marshall W. J. Fluorine Chem.  2011,  132:  41 
  • 24 Paradies J. Synthesis  2010,  947 
  • 25 Li C.-L. Zhang X.-G. Tang R.-Y. Zhong P. Li J.-H. J. Org. Chem.  2010,  75:  7037 
  • 26 Pan W. Dong D. Ouyang Y. Wu R. Yang Y. Liu Q. Synthesis  2007,  2115 
  • 27 Sonavane SU. Chidambaram M. Almog J. Sasson Y. Tetrahedron Lett.  2007,  48:  6048 
  • 28 Ivanchikova ID. Lebedeva NI. Shvartsberg MS. Synthesis  2004,  2131 

    References

  • 1 Young JA. J. Chem. Edu.  2009,  86:  919 
  • 2a Akue-Gedu R. Gautret P. Lelieur J.-P. Rigo B. Synthesis  2007,  3319 
  • 2b Zimmermann V. Müller R. Bräse S. Synlett  2008,  278 
  • 3 EI-Faham A. Khattab SN. Synlett  2009,  886 
  • 4 Pan L. Liu Q. Synlett  2011,  1073 
  • 5 Qing F.-L. Zheng F. Synlett  2011,  1052 
  • 6 Crivillers N. Oxtoby NS. Mas-Torrent M. Veciana J. Rovira C. Synthesis  2007,  1621 
  • 7 Periasamy M. Ramani G. Muthukumaragopal GP. Synthesis  2009,  1739 
  • 8 Pirat C. Ultré V. Lebegue N. Berthelot P. Yous S. Carato P. Synthesis  2011,  480 
  • 9 Kaku H. Okamoto N. Nishii T. Horikawa M. Tsunoda T. Synthesis  2010,  2931 
  • 10 Eller GA. Vilkauskaitè G. Arbačiauskienè E. Sačkus A. Holzer W. Synth. Commun.  2011,  41:  541 
  • 11 Sun D.-Q. Yang J.-K. Synthesis  2011,  2454 
  • 12 Vinogradova OV. Sorokoumov VN. Balova IA. Tetrahedron Lett.  2009,  50:  6358 
  • 13 Miyahara Y. J. Org. Chem.  2006,  71:  6516 
  • 14 Thomae D. Kirsch G. Seck P. Synthesis  2007,  1027 
  • 15 Banerji A. Biswas PK. Bandyopadhyay D. Gupta M. Prangé T. Neuman A. Phosphorus, Sulfur Silicon Relat. Elem.  2009,  184:  3199 
  • 16 Willy B. Müller TJJ. Synlett  2009,  1255 
  • 17 Saito M. Yamamoto T. Osaka I. Miyazaki E. Takimiya K. Kuwabara H. Ikeda M. Tetrahedron Lett.  2010,  51:  5277 
  • 18 Zheng SC. Huang WQ. Gao N. Cui RM. Zhang M. Zhao XM. Chem. Commun.  2011,  47:  6969 
  • 19 Okamoto K. Yamamoto T. Kanbara T. Synlett  2007,  2687 
  • 20 Güler H. Kurtuluş F. Kadan å. Morkan A. Akin S. Phosphorus, Sulfur Silicon Relat. Elem.  2006,  181:  1371 
  • 21 Salama TA. El-Ahl A.-AS. Elmorsy SS. Khalil A.-GM. Ismail MA. Tetrahedron Lett.  2009,  50:  5933 
  • 22 Mahdavi H. Tamami B. Phosphorus, Sulfur Silicon Relat. Elem.  2005,  180:  1929 
  • 23 Petrov VA. Marshall W. J. Fluorine Chem.  2011,  132:  41 
  • 24 Paradies J. Synthesis  2010,  947 
  • 25 Li C.-L. Zhang X.-G. Tang R.-Y. Zhong P. Li J.-H. J. Org. Chem.  2010,  75:  7037 
  • 26 Pan W. Dong D. Ouyang Y. Wu R. Yang Y. Liu Q. Synthesis  2007,  2115 
  • 27 Sonavane SU. Chidambaram M. Almog J. Sasson Y. Tetrahedron Lett.  2007,  48:  6048 
  • 28 Ivanchikova ID. Lebedeva NI. Shvartsberg MS. Synthesis  2004,  2131