Abstract
Transesterification of amino acid ester derivatives was developed
using a tetranuclear zinc cluster, Zn4 (OCOCF3 )6 O,
as the catalyst. Because the reaction conditions were very mild,
a variety of N-protective groups and functional groups on side chains
were tolerated.
Key words
transesterification - esters - zinc - amino
acids - clusters
References and Notes
<A NAME="RU05911ST-1">1 </A>
Jakubke HD.
Jeschkeit J.
Amino
Acids, Peptides and Proteins
Macmillan;
London:
1977.
<A NAME="RU05911ST-2A">2a </A>
Beauchamp LM.
Orr GF.
de Miranda P.
Burnette T.
Krenitsky TA.
Antiviral
Chem. Chemother.
1992,
3:
157
<A NAME="RU05911ST-2B">2b </A>
Prescovitz MD.
Transplant. Rev.
2006,
20:
82
<A NAME="RU05911ST-3">3 </A>
Hansen BV,
Gunnarsson POG,
Mollberg HR, and
Johansson SA. inventors; US 5036062.
<A NAME="RU05911ST-4">4 </A>
Milioni C,
Efthyimiopoulos C,
Koch B,
Jung L, and
Jung J. inventors; US 4913852.
<A NAME="RU05911ST-5">5 </A>
Hewawasam P,
Chen X, and
Starrett JE. inventors; WO 9938853.
<A NAME="RU05911ST-6A">6a </A>
Otera J.
Nishikido J.
Esterification
2nd
ed.:
Wiley-VCH;
Weinheim:
2010.
p.25-46
<A NAME="RU05911ST-6B">6b </A>
Ogliaruso MA.
Wolfe JF.
Synthesis of Carboxylic Acids, Esters and
Their Derivatives
John Wiley and Sons;
New
York:
1991.
p.145-148
<A NAME="RU05911ST-6C">6c </A>
Ogliaruso MA.
Wolfe JF.
Synthesis of Carboxylic Acids, Esters and
their Derivatives
John Wiley and Sons;
New
York:
1991.
p.377-465
<A NAME="RU05911ST-7">7 </A>
Dhaon MK.
Olsen RK.
Ramasamy K.
J.
Org. Chem.
1982,
47:
1962
<A NAME="RU05911ST-8A">8a </A>
Otera J.
Chem. Rev.
1993,
93:
1449
<A NAME="RU05911ST-8B">8b </A>
Grasa GA.
Singh R.
Nolan SP.
Synthesis
2004,
971
<A NAME="RU05911ST-8C">8c </A>
Hoydonckx HE.
De Vos DE.
Chavan SA.
Jacobs PA.
Top. Catal.
2004,
27:
83
<A NAME="RU05911ST-9">9 </A>
Rehberg CE.
Fisher CH.
J. Org. Chem.
1947,
12:
226
<A NAME="RU05911ST-10A">10a </A>
Seebach D.
Hungerbuehler E.
Naef R.
Schnurrenberger P.
Weidmann B.
Zueger M.
Synthesis
1982,
138
<A NAME="RU05911ST-10B">10b </A>
Schnurrenberger P.
Züger MF.
Seebach D.
Helv. Chim. Acta
1982,
65:
1197
<A NAME="RU05911ST-10C">10c </A>
Krasik P.
Tetrahedron
Lett.
1998,
39:
4223
<A NAME="RU05911ST-11A">11a </A>
Otera J.
Yano T.
Kawabata A.
Nozaki H.
Tetrahedron
Lett.
1986,
27:
2383
<A NAME="RU05911ST-11B">11b </A>
Otera J.
Ioka S.
Nozaki H.
J.
Org. Chem.
1989,
54:
4013
<A NAME="RU05911ST-11C">11c </A>
Otera J.
Dan-oh N.
Nozaki H.
J.
Org. Chem.
1991,
56:
5307
<A NAME="RU05911ST-11D">11d </A>
Otera J.
Dan-oh N.
Nozaki H.
Tetrahedron
1993,
49:
3065
<A NAME="RU05911ST-11E">11e </A>
Orita A.
Mitsutome A.
Otera J.
J.
Org. Chem.
1998,
63:
2420
<A NAME="RU05911ST-11F">11f </A>
Orita A.
Hamada Y.
Nakano T.
Toyoshima S.
Otera J.
Chem.
Eur. J.
2001,
7:
3321
<A NAME="RU05911ST-11G">11g </A>
Xiang J.
Toyoshima S.
Orita A.
Otera J.
Angew. Chem. Int. Ed.
2001,
40:
3670
<A NAME="RU05911ST-11H">11h </A>
Xiang J.
Orita A.
Otera J.
Adv.
Synth. Catal.
2002,
344:
84
<A NAME="RU05911ST-11I">11i </A>
Xiang J.
Orita A.
Otera J.
J.
Org. Chem.
2002,
648:
246
<A NAME="RU05911ST-11J">11j </A>
Otera J.
Acc.
Chem. Res.
2004,
37:
288
<A NAME="RU05911ST-12A">12a </A>
Brenner M.
Huber W.
Helv.
Chim. Acta
1953,
36:
1109
<A NAME="RU05911ST-12B">12b </A>
Rehwinkel H.
Steglich W.
Synthesis
1982,
826
<A NAME="RU05911ST-12C">12c </A>
Seebach D.
Thaler A.
Blaser D.
Ko SY.
Helv. Chem. Acta
1991,
74:
1102
<A NAME="RU05911ST-13A">13a </A>
Ohshima T.
Iwasaki T.
Maegawa Y.
Yoshiyama A.
Mashima K.
J. Am. Chem. Soc.
2008,
130:
2944
<A NAME="RU05911ST-13B">13b </A>
Iwasaki T.
Maegawa Y.
Hayashi Y.
Ohshima T.
Mashima K.
J.
Org. Chem.
2008,
73:
5147
<A NAME="RU05911ST-13C">13c </A>
Iwasaki T.
Maegawa M.
Hayashi Y.
Ohshima T.
Mashima K.
Synlett
2009,
1659
<A NAME="RU05911ST-13D">13d </A>
Iwasaki T.
Agura K.
Maegawa Y.
Hayashi Y.
Ohshima T.
Mashima K.
Chem. Eur. J.
2010,
16:
11567
<A NAME="RU05911ST-14">14 </A>
Shapiro G.
Marzi M.
J. Org. Chem.
1997,
62:
7096
<A NAME="RU05911ST-15">15 </A>
Maegawa Y.
Ohshima T.
Hayashi Y.
Agura K.
Iwasaki T.
Mashima K.
ACS Catal.
2011,
1:
1178
<A NAME="RU05911ST-16">16 </A>
Even in the presence of DMAP base
(20 mol%), no epimerization of the products 5ab (>99% ee)
and 6ab (98% de) were observed.
Only in the case of phenylglycine derivative 10aa ,
partial epimerization was detected with DMAP additive (99% ee
to 63% ee), although the reaction of 10aa did
not require the addition of DMAP.
<A NAME="RU05911ST-17A">17a </A>
Smith GG.
Sivakua T.
J.
Org. Chem.
1983,
48:
627
<A NAME="RU05911ST-17B">17b </A> Matsuo H., Kawazoe Y.,
Sato M., Ohnishi M., Tatsuno T.; Chem. Pharm.
Bull.; 1967 , 15: 391
<A NAME="RU05911ST-17C">17c </A>
Sato M.
Tatsuno T.
Matsuo H.
Chem.
Pharm. Bull.
1970,
18:
1794
<A NAME="RU05911ST-18">18 </A>
No peak corresponding to amide was
found in the ¹ H NMR spectrum of the crude product
before Cbz protection.