Synlett 2012; 23(5): 801-804
DOI: 10.1055/s-0031-1290302
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Aerobic Oxidative Synthesis of Primary Amides from (Aryl)methanamines

Wei Xu
a   Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China
,
Yuyang Jiang
b   Key Laboratory of Chemical Biology (Guangdong Province), Graduate School of Shenzhen, Tsinghua University, Shenzhen 518057, P. R. of China, Fax: +86(10)62781695   Email: fuhua@mail.tsinghua.edu.cn
,
Hua Fu*
a   Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China
b   Key Laboratory of Chemical Biology (Guangdong Province), Graduate School of Shenzhen, Tsinghua University, Shenzhen 518057, P. R. of China, Fax: +86(10)62781695   Email: fuhua@mail.tsinghua.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 08 December 2011

Accepted after revision: 08 January 2012

Publication Date:
27 February 2012 (online)


Abstract

A copper-catalyzed aerobic oxidative method for the synthesis of primary aryl amides has been developed, and the direct oxygenation of (aryl)methanamines to primary aryl amides by molecular oxygen showed convenient, practical, and environment-friendly advantages. This method will find wide application in chemistry and biology.

Supporting Information

 
  • References

  • 1 Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
  • 2 Humphrey JM, Chamberlin AR. Chem. Rev. 1997; 97: 2243
    • 3a Mabermann CE In Encyclopedia of Chemical Technology. Vol. 1. Kroschwitz JI. Wiley; New York: 1991: 251-266
    • 3b Lipp D In Encyclopedia of Chemical Technology. Vol. 1. Kroschwitz JI. Wiley; New York: 1991: 266-287
    • 3c Opsahl R In Encyclopedia of Chemical Technology. Vol. 2. Kroschwitz JI. Wiley; New York: 1991: 346-356
    • 3d Larock RC. Comprehensive Organic Transformations. 2nd ed. Wiley-VCH; New York: 1999
    • 4a Smith MB, March J. March’s Advanced Organic Chemistry. 5th ed. Wiley; New York: 2001
    • 4b Smith MB. Organic Synthesis. 2nd ed. McGraw-Hill; New York: 2002
    • 5a Fujiwara H, Ogasawara Y, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2007; 46: 5202
    • 5b Alia MA, Punniyamurthya T. Adv. Synth. Catal. 2010; 352: 288
    • 5c Ramón RS, Bosson J, Díez-González S, Marion N, Nolan SP. J. Org. Chem. 2010; 75: 1197
    • 5d Owston NA, Parker AJ, Williams JM. J. Org. Lett. 2007; 9: 3599
    • 5e Owston NA, Parker AJ, Williams JM. J. Org. Lett. 2007; 9: 73
    • 6a Goto A, Endo K, Saito S. Angew. Chem. Int. Ed. 2008; 47: 3607
    • 6b Yamaguchi K, Matsushita M, Mizuno N. Angew. Chem. Int. Ed. 2004; 43: 1576
    • 6c Kim AY, Bae HS, Park S, Park S, Park KH. Catal. Lett. 2011; 141: 685
    • 6d Mitsudome T, Mikami Y, Mori H, Arita S, Mizugaki T, Jitsukawa K, Kaneda K. Chem. Commun. 2009; 3258
    • 6e Cadierno V, Díez J, Francos J, Gimeno J. Chem. Eur. J. 2010; 16: 9808
    • 6f Cadierno V, Francos J, Gimeno J. Chem. Eur. J. 2008; 14: 6601
    • 6g He J, Yamaguchi K, Mizuno N. J. Org. Chem. 2011; 76: 4606
    • 7a Tang R, Diamond SE, Neary N, Mares F. J. Chem. Soc., Chem. Commun. 1978; 562
    • 7b Tanaka K, Yoshifuji S, Nitta Y. Chem. Pharm. Bull. 1988; 36: 3125
  • 8 Mori K, Yamaguchi K, Mizugaki T, Ebitani K, Kaneda K. Chem. Commun. 2001; 461
  • 9 Kim JW, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2008; 47: 9249
    • For recent reviews on copper-catalyzed cross-couplings, see:

    • 10a Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 10b Kunz K, Scholz U, Ganzer D. Synlett 2003; 2428
    • 10c Beletskaya IP, Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337
    • 10d Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
    • 10e Ma D, Cai Q. Acc. Chem. Res. 2008; 41: 1450
    • 10f Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 10g Rao H, Fu H. Synlett 2011; 745; and references cited therein
    • For selected papers, see:

    • 11a Klapars A, Antilla JC, Huang X, Buchwald SL. J. Am. Chem. Soc. 2001; 123: 7727
    • 11b Klapars A, Huang XH, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 7421
    • 11c Antilla JC, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 11684
    • 11d Okano K, Tokuyama H, Fukuyama T. Org. Lett. 2003; 5: 4987
    • 11e Gujadhur RK, Bates CG, Venkataraman D. Org. Lett. 2001; 3: 4315
    • 11f Gajare AS, Toyota K, Yoshifuji M, Yoshifuji F. Chem. Commun. 2004; 1994
    • 11g Ma D, Zhang Y, Yao J, Wu S, Tao F. J. Am. Chem. Soc. 1998; 120: 12459
    • 11h Ma D, Cai Q, Zhang H. Org. Lett. 2003; 5: 2453
    • 11i Zhu L, Cheng L, Zhang Y, Xie R, You J. J. Org. Chem. 2007; 72: 2737
    • 12a Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
    • 12b King AE, Huffman LM, Casitas A, Costas M, Ribas X, Stahl SS. J. Am. Chem. Soc. 2010; 132: 12068
    • 12c Armstrong A, Collins JC. Angew. Chem. Int. Ed. 2010; 49: 2282
    • 12d Zhou W, Zhang L, Jiao N. Angew. Chem. Int. Ed. 2009; 48: 7094
    • 12e Monguchi D, Fujiwara T, Furukawa H, Mori A. Org. Lett. 2009; 11: 1607
    • 12f Wang Q, Schreiber SL. Org. Lett. 2009; 11: 5178
    • 12g Kawano T, Hirano K, Satoh T, Miura M. J. Am. Chem. Soc. 2010; 132: 6900
    • 12h John A, Nicholas KM. J. Org. Chem. 2011; 76: 4158
    • 12i Matsuda N, Hirano K, Satoh T, Miura M. Org. Lett. 2011; 13: 2860
    • 12j Miyasaka M, Hirano K, Satoh T, Kowalczyk R, Bolm C, Miura M. Org. Lett. 2011; 13: 359
    • 12k Guo S, Qian B, Xie Y, Xia C, Huang H. Org. Lett. 2011; 13: 522
    • 13a Brasche G, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
    • 13b Ueda S, Nagasawa H. Angew. Chem. Int. Ed. 2008; 47: 6411
    • 13c Saha P, Ramana T, Purkait N, Ali MA, Paul R, Punniyamurthy T. J. Org. Chem. 2009; 74: 8719
    • 13d Wang H, Wang Y, Liang D, Liu L, Zhang J, Zhu Q. Angew. Chem. Int. Ed. 2011; 50: 5677
    • 13e Lu J, Jin Y, Liu H, Jiang Y, Fu H. Org. Lett. 2011; 13: 3694
    • For some reviews, see:

    • 14a Stahl SS. Angew. Chem. Int. Ed. 2004; 43: 3400
    • 14b Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329
    • 14c Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
    • 14d Wang J.-R, Fu Y, Zhang B.-B, Cui X, Liu L, Guo Q.-X. Tetrahedron Lett. 2006; 47: 8293
  • 15 K2CO3 (99.997%), Mg (2 ppm), Na (8 ppm), other elements including Al, Sb, As, Ba, Bi, B, Cd, Ca, Cr, Co, Cu, In, Fe, Pb, Li, Mn, Mo, Ni, P, Si, Te, Sn, Ti, V, Zn, Zr (sought but not detected). The data were provided by Alfa Aesar
  • 16 General Procedure for the Synthesis of Compounds 2a–l A 25 mL Schlenk tube was charged with a magnetic stirrer, (aryl)methanamine (1, 0.5 mmol), K2CO3 (1 mmol, 138 mg), and CuBr (0.1 mmol, 14 mg) in mixed solvent of DMSO (2 mL) and H2O (40 μL). The mixture was allowed to stir under O2 (1 atm) at 140–160 °C for 6–12 h (see Table 2 for details). After completion of the reaction, the resulting solution was cooled to r.t. and filtered, and the solvent of filtrate was removed with the aid of a rotary evaporator. The residue was purified by column chromatography on silica gel using PE–EtOAc as eluent to provide the desired product 2. Analytical Data for Two Typical Examples 3-Pyridinecarboxamide (2i) 17 Eluent: EtOAc; yield 55 mg (90%); white solid; mp 131–132 °C (lit.17 131–132 °C). 1H NMR (300 MHz, DMSO-d 6): δ = 9.09 (s, 1 H), 8.74 (d, 1 H, J = 4.1 Hz), 8.26 (d, 2 H, J = 8.3 Hz), 7.68 (s, 1 H), 7.53 (dd, 1 H, J = 4.8, 4.8 Hz). 13C NMR (75 MHz, DMSO-d 6): δ = 166.5, 151.9, 148.7, 135.3, 129.7, 123.5. ESI-MS: m/z = 123.4 [M + H]+. 2-Furancarboxamide (2k) 17 Eluent: PE–EtOAc (1:1); yield 42 mg (76%); white solid; mp 140–142 °C (lit.17 140–142 °C). 1H NMR (300 MHz, DMSO-d 6): δ = 7.81 (s, 1 H), 7.76 (s, 1 H), 7.37 (s, 1 H), 7.10 (d, 1 H, J = 3.4 Hz), 6.60 (dd, 1 H, J = 1.7, 1.7 Hz). 13C NMR (75 MHz, DMSO-d 6): δ = 159.4, 148.0, 145.0, 113.6, 111.8. ESI-MS: m/z = 112.5 [M + H]+
  • 17 Owston NA, Parker AJ, Williams JM. J. Org. Lett. 2007; 9: 73