Abstract
This Account describes our research over the past decade in the
asymmetric alkyne addition to aldehydes to generate optically active
propargylic alcohols. Our methods employ a dialkylzinc reagent to
react with a terminal alkyne to form an alkynylzinc nucleophile,
and can be grouped into the BINOL-catalyzed reactions and the functionalized
BINOL catalyzed reactions. We first describe the development of
the BINOL-ZnEt2 -Ti(Oi -Pr)4 catalyst
system, and its modification through the use of Lewis base additives
to form the alkynylzinc at room temperature. The substrate scope
compatible with these methods and the enantioselectivities achieved
are discussed. We then describe the functionalized BINOL and H8 BINOL catalyst
systems, which can be further divided into classes based on the
manner in which the BINOL framework has been modified. Generally,
these functionalized BINOL and H8 BINOL derivatives contain
internal Lewis basic sites which can both promote the formation
of the nucleophilic alkynylzinc reagents at reduced temperature
and modify the catalytic properties of the chiral biaryl unit. In a
few cases, these catalysts also show good efficiency even without the
use of the Ti(IV) reagent. The catalytic methods in this Account have
demonstrated that a wide range of alkyne and aldehyde substrates
can be subjected to the asymmetric addition reactions to generate
structurally diverse chiral propargylic alcohols with high enantioselectivity.
Some of these methods have exhibited high practicality in synthesis.
1 Introduction
2 BINOL-Based Catalytic Systems
2.1 Catalysis by BINOL-ZnEt2 -Ti(Oi -Pr)4
2.2 Catalysis by BINOL-ZnEt2 -Ti(Oi -Pr)4 -HMPA
2.3 Catalysis by BINOL-ZnEt2 -Ti(Oi -Pr)4 -NMI
2.4 Catalysis by BINOL-ZnEt2 -Ti(Oi- Pr)4 -Cy2 NH
3 Functionalized BINOL-Based Catalytic Systems
3.1 Catalysis by 3,3′-Dianisyl-BINOLs and -H8 BINOLs
3.2 Catalysis by 3,3′-Bis(diphenylmethoxy)methyl Substituted BINOLs
3.3 Catalysis by Acyclic and Macrocyclic Binaphthyl Salens
3.4 Catalysis by 3,3′-Bismorpholinomethyl H8 BINOL
3.5 Catalysis by C
1 -Symmetric
BINOL-Terpyridine
4 Summary
Key words
alkyne addition to aldehydes - BINOL-based catalytic systems -
References
<A NAME="RA61011ST-1A">1a </A>
Frantz DE.
Fässler R.
Tomooka CS.
Carreira EM.
Acc. Chem. Res.
2000,
33:
373
<A NAME="RA61011ST-1B">1b </A>
Pu L.
Tetrahedron
2003,
59:
9873
<A NAME="RA61011ST-1C">1c </A>
Cozzi PG.
Hilgraf R.
Zimmermann N.
Eur. J. Org. Chem.
2004,
4095
<A NAME="RA61011ST-1D">1d </A>
Lu G.
Li Y.-M.
Li X.-S.
Chan ASC.
Coord. Chem. Rev.
2005,
249:
1736
<A NAME="RA61011ST-1E">1e </A>
Trost BM.
Weiss AH.
Adv.
Synth. Catal.
2009,
351:
963
<A NAME="RA61011ST-1F">1f </A>
Gao G.
Pu L.
Sci. China, Ser. B, Chem. Life Sci. Earth
Sci.
2010,
53:
21
Selected examples of transformations
of propargylic alcohols:
<A NAME="RA61011ST-2A">2a </A>
Trost BM.
Müller TJJ.
J.
Am. Chem. Soc.
1994,
116:
4985
<A NAME="RA61011ST-2B">2b </A>
Trost BM.
Müller TJJ.
Martinez J.
J. Am. Chem. Soc.
1995,
117:
1888
<A NAME="RA61011ST-2C">2c </A>
Arcadi A.
Cacchi S.
Fabrizi G.
Marinelli F.
Pace P.
Eur.
J. Org. Chem.
1999,
3305
<A NAME="RA61011ST-2D">2d </A>
Marshall JA.
Chobanian HR.
Yanik MM.
Org. Lett.
2001,
3:
3369
<A NAME="RA61011ST-2E">2e </A>
Trost BM.
Ball ZT.
Jöge T.
Angew. Chem. Int. Ed.
2003,
42:
3415
<A NAME="RA61011ST-2F">2f </A>
Alfonsi M.
Arcadi A.
Chiarini M.
Marinelli F.
J. Org. Chem.
2007,
72:
9510
<A NAME="RA61011ST-2G">2g </A>
Zhou LH.
Yu XQ.
Pu L.
J. Org. Chem.
2009,
74:
2013
<A NAME="RA61011ST-2H">2h </A> See references 8, 12, 17,
and 25. Selected examples of propargylic alcohols in total synthesis:
Crimmins MT.
Jung DK.
Gray JL.
J.
Am. Chem. Soc.
1993,
115:
3146
<A NAME="RA61011ST-2I">2i </A>
Roethle PA.
Trauner D.
Org. Lett.
2006,
8:
345
<A NAME="RA61011ST-2J">2j </A>
Trost BM.
Weiss AH.
Angew.
Chem. Int. Ed.
2007,
46:
7664
<A NAME="RA61011ST-2K">2k </A>
Imagawa H.
Saijo H.
Kurisaki T.
Yamamoto MK.
Fukuyama Y.
Nishizawa M.
Org. Lett.
2009,
11:
1253
Selected reviews on BINOL and BINOL
derivatives:
<A NAME="RA61011ST-3A">3a </A>
Rosini C.
Franzini L.
Raffaelli A.
Salvadori P.
Synthesis
1992,
503
<A NAME="RA61011ST-3B">3b </A>
Pu L.
Chem.
Rev.
1998,
98:
2405
<A NAME="RA61011ST-3C">3c </A>
Chen Y.
Yekta S.
Yudin AK.
Chem.
Rev.
2003,
103:
3155
<A NAME="RA61011ST-3D">3d </A>
Kočovský P.
Vyskočil Š.
Smrčina M.
Chem. Rev.
2003,
103:
3213
<A NAME="RA61011ST-3E">3e </A>
Telfer SG.
Kuroda R.
Coord. Chem.
Rev.
2003,
242:
33
<A NAME="RA61011ST-3F">3f </A>
Brunel JM.
Chem. Rev.
2005,
105:
857
<A NAME="RA61011ST-3G">3g </A>
Shibasaki M.
Matsunaga S.
Chem. Soc. Rev.
2006,
35:
269
<A NAME="RA61011ST-3H">3h </A>
Terada M.
Chem.
Commun.
2008,
4097
<A NAME="RA61011ST-3I">3i </A>
Schenker S.
Zamfir A.
Freund M.
Tsogoeva SB.
Eur. J. Org. Chem.
2011,
2209
<A NAME="RA61011ST-4">4 </A>
Pu L.
1,1′-Binaphthyl
Based Chiral Materials: Our Journey
Imperial College
Press;
London / UK:
2009.
A few selected reports by other
researchers on the catalytic asymmetric alkyne addition to aldehydes:
<A NAME="RA61011ST-5A">5a </A>
Frantz DE.
Fässler R.
Carreira EM.
J. Am. Chem. Soc.
2000,
122:
1806
<A NAME="RA61011ST-5B">5b </A>
Anand NK.
Carreira EM.
J.
Am. Chem. Soc.
2001,
123:
9687
<A NAME="RA61011ST-5C">5c </A>
Li X.-S.
Lu G.
Kwok WH.
Chan ASC.
J. Am. Chem.
Soc.
2002,
124:
12636
<A NAME="RA61011ST-5D">5d </A>
Xu ZQ.
Wang R.
Xu JK.
Da C S.
Yan WJ.
Chen C.
Angew. Chem. Int. Ed.
2003,
42:
5747
<A NAME="RA61011ST-5E">5e </A>
Takita R.
Yakura K.
Ohshima T.
Shibasaki M.
J. Am. Chem. Soc.
2005,
127:
13760
<A NAME="RA61011ST-5F">5f </A>
Wolf C.
Liu S.
J. Am. Chem. Soc.
2006,
128:
10996
<A NAME="RA61011ST-5G">5g </A>
Trost BM.
Weiss AH.
von
Wangelin AJ.
J. Am. Chem. Soc.
2006,
128:
8
<A NAME="RA61011ST-6A">6a </A>
Moore D.
Pu L.
Org.
Lett.
2002,
4:
1855
<A NAME="RA61011ST-6B">6b </A> Using BINOL in combination
with ZnMe2 and Ti(Oi -Pr)4 for
the asymmetric phenylacetylene addition to aromatic aldehydes was
reported at about the same time:
Lu G.
Li XS.
Chan ASC.
Chem.
Commun.
2002,
172
<A NAME="RA61011ST-7A">7a </A>
Gao G.
Moore D.
Xie R.-G.
Pu L.
Org. Lett.
2002,
4:
4143
<A NAME="RA61011ST-7B">7b </A>
Du X.
Wang Q.
He X.
Peng R.-G.
Zhang X.
Yu X.-Q.
Tetrahedron:
Asymmetry
2011,
22:
1142
<A NAME="RA61011ST-8">8 </A>
Turlington M.
Yue Y.
Yu X.-Q.
Pu L.
J. Org. Chem.
2010,
75:
6941
<A NAME="RA61011ST-9">9 </A>
Okhlobystin OY.
Zakharkin LI.
J. Organomet. Chem.
1965,
3:
247
<A NAME="RA61011ST-10">10 </A>
Gao G.
Xie R.-G.
Pu L.
Proc. Natl.
Acad. Sci. U.S.A.
2004,
101:
5417
<A NAME="RA61011ST-11">11 </A>
Gao G.
Wang Q.
Yu X.-Q.
Xie R.-G.
Pu L.
Angew. Chem. Int. Ed.
2006,
45:
122
<A NAME="RA61011ST-12">12 </A>
Rajaram AR.
Pu L.
Org. Lett.
2006,
8:
2019
<A NAME="RA61011ST-13">13 </A>
Yang F.
Xi P.
Yang L.
Lan J.
Xie R.
You J.
J.
Org. Chem.
2007,
72:
5457
<A NAME="RA61011ST-14">14 </A>
Turlington M.
Catalytic Asymmetric Alkyne Addition to Aldehydes
and Applications of Propargylic Alcohols in Synthesis , Ph.D.
Thesis
University of Virginia;
Charlottesville:
2011.
<A NAME="RA61011ST-15">15 </A>
When the first step was allowed to
proceed for 2 h for the reaction shown in Scheme
[9 ]
b, the propargylic alcohol was formed
in only 25% yield and 84% ee.
<A NAME="RA61011ST-16">16 </A>
Du YH.
Turlington M.
Zhou X.
Pu L.
Tetrahedron Lett.
2010,
51:
5024
<A NAME="RA61011ST-17">17 </A>
Turlington M.
Du Y.-H.
Ostrum SG.
Santosh V.
Wren K.
Lin T.
Sabat M.
Pu L.
J.
Am. Chem. Soc.
2011,
133:
11780
Previous reports on the asymmetric
1,3-dialkyne addition to aldehydes:
<A NAME="RA61011ST-18A">18a </A>
Reber S.
Knöpfel TF.
Carreira EM.
Tetrahedron
2003,
59:
6813
<A NAME="RA61011ST-18B">18b </A>
Trost BM.
Chan VS.
Yamamoto D.
J. Am. Chem. Soc.
2010,
132:
5186
<A NAME="RA61011ST-19">19 </A>
Huang W.-S.
Hu Q.-S.
Pu L.
J.
Org. Chem.
1998,
63:
1364
<A NAME="RA61011ST-20">20 </A>
Huang W.-S.
Pu L.
Tetrahedron Lett.
2000,
41:
145
<A NAME="RA61011ST-21">21 </A>
Moore D.
Huang W.-S.
Xu M.-H.
Pu L.
Tetrahedron Lett.
2002,
43:
8831
<A NAME="RA61011ST-22">22 </A>
Xu M.-H.
Pu L.
Org. Lett.
2002,
4:
4555
<A NAME="RA61011ST-23">23 </A>
Au-Yeung TT.-L.
Chan S.-S.
Chan ASC.
Adv. Synth. Catal.
2003,
345:
537
<A NAME="RA61011ST-24">24 </A>
Turlington M.
DeBerardinis AM.
Pu L.
Org.
Lett.
2009,
11:
2441
<A NAME="RA61011ST-25">25 </A>
Yang Y.
Turlington M.
Yu X.-Q.
Pu L.
J. Org. Chem.
2009,
74:
8681
<A NAME="RA61011ST-26">26 </A>
Wang Q.
Chen X.
Tao L.
Wang L.
Xiao D.
Yu X.-Q.
Pu L.
J. Org. Chem.
2007,
72:
97
<A NAME="RA61011ST-27">27 </A>
Wang Q.
Chen S.-Y.
Yu X.-Q.
Pu L.
Tetrahedron
2007,
63:
4422
<A NAME="RA61011ST-28A">28a </A>
Sasaki H.
Irie R.
Katsuki T.
Synlett
1993,
300
<A NAME="RA61011ST-28B">28b </A>
DiMauro EF.
Kozlowski MC.
Org.
Lett.
2001,
3:
1641
<A NAME="RA61011ST-28C">28c </A>
Annamalai V.
DiMauro EF.
Carroll PJ.
Kozlowski MC.
J.
Org. Chem.
2003,
68:
1973
<A NAME="RA61011ST-28D">28d </A>
DiMauro EF.
Kozlowski MC.
Organometallics
2002,
21:
1454
<A NAME="RA61011ST-29">29 </A>
Li Z.-B.
Pu L.
Org. Lett.
2004,
6:
1065
<A NAME="RA61011ST-30">30 </A>
Li Z.-B.
Liu T.-D.
Pu L.
J.
Org. Chem.
2007,
72:
4340
<A NAME="RA61011ST-31A">31a </A>
Liu L.
Pu L.
Tetrahedron
2004,
60:
7427
<A NAME="RA61011ST-31B">31b </A>
Qin Y.-C.
Liu L.
Sabat M.
Pu L.
Tetrahedron
2006,
62:
9335
<A NAME="RA61011ST-32">32 </A>
Chen X.
Chen W.
Wang L.
Yu X.-Q.
Huang D.-S.
Pu L.
Tetrahedron
2010,
66:
1990