Aktuelle Kardiologie 2012; 1(2): 112-117
DOI: 10.1055/s-0031-1298518
Übersichtsarbeit
Georg Thieme Verlag KG Stuttgart · New York

Degeneration und Kalzifizierung von Herzklappen

Insights into Degenerative Valvular Calcification
Ralf Westenfeld
1   Klinik für Kardiologie, Pneumologie und Angiologie, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität Düsseldorf
,
Markus Ketteler
2   III. Medizinische Klinik, Nephrologie, Klinikum Coburg GmbH
› Author Affiliations
Further Information

Publication History

Publication Date:
18 June 2012 (online)

Zusammenfassung

Die Zahlen degenerativer Herzklappenerkrankungen steigen in Deutschland über die letzten Jahre kontinuierlich an. Histologisches Korrelat aller degenerativen Klappenveränderungen ist die Sequenz von initialer fibrotischer Klappenverdickung mit begleitender Inflammation hin zu fortschreitender destruierender Kalzifizierung. Diese valvuläre Kalzifizierung galt in der Vergangenheit als passive Begleiterscheinung des physiologischen Alterungsprozesses. Erst in den letzten Jahren konnte die klinische Relevanz der fortgeschrittenen Kalzifizierung als potenter Prädiktor kardiovaskulärer Morbidität und Mortalität aufgezeigt werden. Darüber hinaus konnten komplexe Regulationsmechanismen der aktiv regulierten Kalzifizierung analog der Vorgänge zum Knochenstoffwechsel entschlüsselt werden: So führen nach heutigem Verständnis allgemeine Endothelnoxen wie Inflammation, Hypertonus oder eine Hyperlipoproteinämie im Bereich des Klappenendothels zur Freisetzung von Morphogenen wie BMP-2 und BMP-4. Diese begünstigen den Vorgang der endothelialen mesenchymalen Transition mit lokaler Entstehung von Myofibroblasten, sekundärer Osteoblastendifferenzierung innerhalb des Klappenapparats und abschließender Mineralisation. Letztere wird als chemischer Prozess der Calcium-Phosphat-Präzipitation zusätzlich durch kalzifizierungsinhibitorische Proteine wie Fetuin-A oder Matrix-Gla-Protein moduliert. Diese Zusammenhänge verdeutlichen, dass die valvuläre Kalzifizierung das Resultat eines komplex regulierten multikausalen Prozesses darstellt. In Zukunft werden multimodale Therapiekonzepte auch unter Berücksichtigung lokaler Regulationsmechanismen zusammen mit der Betrachtung des individuellen Risikoprofils die Basis für die Behandlung degenerativer Klappenerkrankungen bilden können.

Abstract

The prevalence of degenerative cardiac valve diseases in Germany has increased continuously over the last few years. The histological correlate of degenerative valvular heart disease is the sequence of initial fibrotic valvular thickening with associated inflammation towards progressive calcification leading to destruction of the valve. In the past, valvular calcification was predominantly regarded as a passive process occurring during physiological aging-processes. It is only in recent years that the clinical significance of progressive calcification has become evident as potent predictor of cardiovascular morbidity and mortality. Furthermore complex regulatory pathomechanisms of unwanted calcification in analogy to processes of physiological bone formation have been decoded: The current understanding is that the general endothelial noxins as inflammation, hypertension or a hyperlipoproteinaemia in the area of the valvular endothelium lead to release of morphogens as BMP-2 and BMP-4. These may promote the process of endothelial mesenchymal transition including a local emergence of myofibroblasts and the development of a secondary differentiation of osteoblasts within the valve apparatus, followed by the final mineralization step. The latter, as part of the chemical process of calcium phosphate precipitation will be modulated additionally through calcification inhibiting proteins, such as fetuin-A or Matrix Gla Protein (MGP). These connections particularly highlight that valvular calcification is the outcome of a complex regulated and multicausal process. Future multimodal therapy concepts will have to take into consideration local regulatory mechanism as well as the individual risk profile of each patient.

 
  • Literatur

  • 1 Lung B, Baron G, Butchart EG et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J 2003; 24: 1231-1243
  • 2 Otto CM, Lind BK, Kitzman DW et al. Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N Engl J Med 1999; 341: 142-147
  • 3 Selzer A. Changing aspects of the natural history of valvular aortic stenosis. N Engl J Med 1987; 317: 91-98
  • 4 Rosenhek R, Binder T, Porenta G et al. Predictors of outcome in severe, asymptomatic aortic stenosis. N Engl J Med 2000; 343: 611-617
  • 5 Bonow RO, Carabello BA, Chatterjee K et al. Focused update incorporated into the ACC/AHA 2006 Guidelines for the Management of Patients With Valvular Heart Disease. Circulation 2008; 118: e523-e661
  • 6 Vahanian A, Baumgartner H, Bax J et al. Guidelines on the management of valvular heart disease. Eur Heart J 2007; 28: 230-268
  • 7 Ewe SH, Arnold CT, Schuijf JD et al. Location and severity of aortic valve calcium and implications for aortic regurgitation after transcatheter aortic valve implantation. Am J Cardiol 2011; 108: 1470-1477
  • 8 Wilkins GT, Weyman AE, Abascal VM et al. Percutaneous balloon dilatation of the mitral valve: an analysis of echocardiographic variables related to outcome and the mechanism of dilatation. Br Heart J 1988; 60: 299-308
  • 9 Wozney JM, Rosen V, Celeste AJ et al. Novel regulators of bone formation: molecular clones and activities. Science 1988; 242: 1528-1534
  • 10 Otto CM, Kuusisto J, Reichenbach DD et al. Characterization of the early lesion of „degenerative“ valvular aortic stenosis: histological and immunohistochemical studies. Circulation 1994; 90: 844-853
  • 11 Miller JD, Chu Y, Brooks RM et al. Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J Am Coll Cardiol 2008; 52: 843-850
  • 12 Medici D, Shore EM, Lounev VY et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med 2010; 16: 1400-1406
  • 13 Rajamannan NM. Calcific aortic stenosis: lessons learned from experimental and clinical studies. Arterioscler Thromb Vasc Biol 2009; 29: 162-168
  • 14 Paruchuri S, Yang JH, Aikawa E et al. Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-A and transforming growth factor-beta2. Circ Res 2006; 99: 861-869
  • 15 Shao JS, Cheng SL, Pingsterhaus JM et al. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest 2005; 115: 1210-1220
  • 16 Caira FC, Stock SR, Gleason TG et al. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol 2006; 47: 1707-1712
  • 17 Gossl M, Modder UI, Atkinson EJ et al. Osteocalcin expression by circulating endothelial progenitor cells in patients with coronary atherosclerosis. J Am Coll Cardiol 2008; 52: 1314-1325
  • 18 Westenfeld R, Jahnen-Dechent W, Ketteler M. Vascular calcification and fetuin-A deficiency in chronic kidney disease. Trends Cardiovasc Med 2007; 17: 124-128
  • 19 Murshed M, Schinke T, McKee MD et al. Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J Cell Biol 2004; 165: 625-630
  • 20 Koos R, Krueger T, Westenfeld R et al. Relation of circulating matrix Gla-protein and anticoagulation status in patients with aortic valve calcification. Thromb Haemost 2009; 101: 706-713
  • 21 Westenfeld R, Schäfer C, Krüger T et al. Fetuin-A protects against atherosclerotic calcification in CKD. J Am Soc Nephrol 2009; 20: 1264-1274
  • 22 Ix JH, Chertow GM, Shlipak MG et al. Association of fetuin-A with mitral annular calcification and aortic stenosis among persons with coronary heart disease: data from the Heart and Soul Study. Circulation 2007; 115: 2533-2539
  • 23 Mathieu P, Voisine P, Pepin A et al. Calcification of human valve interstitial cells is dependent on alkaline phosphatase activity. J Heart Valve Dis 2005; 14: 353-357
  • 24 Fernandez-Reyes MJ, Auxiliadora Bajo M, Robles P et al. Mitral annular calcification in CAPD patients with a low degree of hyperparathyroidism: an analysis of other possible risk factors. Nephrol Dial Transplant 1995; 10: 2090-2095
  • 25 Linefsky JP, OʼBrien KD, Katz R et al. Association of serum phosphate levels with aortic valve sclerosis and annular calcification: the cardiovascular health study. J Am Coll Cardiol 2011; 58: 291-297
  • 26 Yamamoto K, Yamamoto H, Yoshida K et al. Prognostic factors for progression of early- and late-stage calcific aortic valve disease in Japanese: the Japanese Aortic Stenosis Study (JASS) retrospective analysis. Hypertens Res 2010; 33: 269-274
  • 27 Cowell SJ, Newby DE, Prescott RJ et al. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med 2005; 352: 2389-2397
  • 28 Yao Y, Bennett BJ, Wang X et al. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res 2010; 107: 485-494
  • 29 Hilton MJ, Tu X, Wu X et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 2008; 14: 306-314
  • 30 Phan O, Ivanovski O, Nguyen-Khoa T et al. Sevelamer prevents uremia-enhanced atherosclerosis progression in apolipoprotein E-deficient mice. Circulation 2005; 112: 2875-2882