RSS-Feed abonnieren
DOI: 10.1055/s-0031-1299782
Genetics of Parkinson's Disease
Publikationsverlauf
Publikationsdatum:
21. Januar 2012 (online)

ABSTRACT
The identification of genes contributing to Parkinson's disease (PD) has allowed for an improved understanding of the underlying pathogenesis of the disorder. The authors review the rapidly growing field of PD genetics, with a focus on the clinical, genetic, and pathophysiologic features of well-validated monogenic forms of PD caused by mutations in the SNCA, LRRK2, Parkin, PINK1, DJ-1, and ATP13A2 genes. In addition, they discuss mutations in the GBA gene, which increase susceptibility for PD. The authors also evaluate the implications of genome-wide association studies and stem cell-derived disease models and give recommendations for genetic testing.
KEYWORDS
Parkinson's disease - genetics - monogenic - genome-wide association study - stem cells
REFERENCES
- 1
Polymeropoulos M H, Lavedan C, Leroy E et al..
Mutation in the alpha-synuclein gene identified in families with Parkinson's disease.
Science.
1997;
276
(5321)
2045-2047
MissingFormLabel
- 2
Spira P J, Sharpe D M, Halliday G, Cavanagh J, Nicholson G A.
Clinical and pathological features of a parkinsonian syndrome in a family with an
Ala53Thr alpha-synuclein mutation.
Ann Neurol.
2001;
49
(3)
313-319
MissingFormLabel
- 3
Nishioka K, Hayashi S, Farrer M J et al..
Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson's disease.
Ann Neurol.
2006;
59
(2)
298-309
MissingFormLabel
- 4
Ross O A, Braithwaite A T, Skipper L M et al..
Genomic investigation of alpha-synuclein multiplication and parkinsonism.
Ann Neurol.
2008;
63
(6)
743-750
MissingFormLabel
- 5
Bertoncini C W, Fernandez C O, Griesinger C, Jovin T M, Zweckstetter M.
Familial mutants of alpha-synuclein with increased neurotoxicity have a destabilized
conformation.
J Biol Chem.
2005;
280
(35)
30649-30652
MissingFormLabel
- 6
Chen L, Feany M B.
Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in
a Drosophila model of Parkinson disease.
Nat Neurosci.
2005;
8
(5)
657-663
MissingFormLabel
- 7
Brice A.
Genetics of Parkinson's disease: LRRK2 on the rise.
Brain.
2005;
128
(Pt 12)
2760-2762
MissingFormLabel
- 8
Healy D G, Falchi M, O'Sullivan S S International LRRK2 Consortium et al.
Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's
disease: a case-control study.
Lancet Neurol.
2008;
7
(7)
583-590
MissingFormLabel
- 9
Wszolek Z K, Pfeiffer R F, Tsuboi Y et al..
Autosomal dominant parkinsonism associated with variable synuclein and tau pathology.
Neurology.
2004;
62
(9)
1619-1622
MissingFormLabel
- 10
Lesage S, Leutenegger A L, Ibanez P French Parkinson's Disease Genetics Study Group et al.
LRRK2 haplotype analyses in European and North African families with Parkinson disease:
a common founder for the G2019S mutation dating from the 13th century.
Am J Hum Genet.
2005;
77
(2)
330-332
MissingFormLabel
- 11
Ozelius L J, Senthil G, Saunders-Pullman R et al..
LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews.
N Engl J Med.
2006;
354
(4)
424-425
MissingFormLabel
- 12
Martin I, Dawson V L, Dawson T M.
Recent advances in the genetics of Parkinson's disease.
Annu Rev Genomics Hum Genet.
2011;
12
301-325
MissingFormLabel
- 13
Smith W W, Pei Z, Jiang H, Dawson V L, Dawson T M, Ross C A.
Kinase activity of mutant LRRK2 mediates neuronal toxicity.
Nat Neurosci.
2006;
9
(10)
1231-1233
MissingFormLabel
- 14
Lücking C B, Dürr A, Bonifati V French Parkinson's Disease Genetics Study Group et al.
Association between early-onset Parkinson's disease and mutations in the parkin gene.
N Engl J Med.
2000;
342
(21)
1560-1567
MissingFormLabel
- 15
Klein C, Lohmann-Hedrich K.
Impact of recent genetic findings in Parkinson's disease.
Curr Opin Neurol.
2007;
20
(4)
453-464
MissingFormLabel
- 16
Mori H, Kondo T, Yokochi M et al..
Pathologic and biochemical studies of juvenile parkinsonism linked to chromosome 6q.
Neurology.
1998;
51
(3)
890-892
MissingFormLabel
- 17
Hristova V A, Beasley S A, Rylett R J, Shaw G S.
Identification of a novel Zn2+-binding domain in the autosomal recessive juvenile
Parkinson-related E3 ligase parkin.
J Biol Chem.
2009;
284
(22)
14978-14986
MissingFormLabel
- 18
Henn I H, Bouman L, Schlehe J S et al..
Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB
signaling.
J Neurosci.
2007;
27
(8)
1868-1878
MissingFormLabel
- 19
Palacino J J, Sagi D, Goldberg M S et al..
Mitochondrial dysfunction and oxidative damage in parkin-deficient mice.
J Biol Chem.
2004;
279
(18)
18614-18622
MissingFormLabel
- 20
Grünewald A, Voges L, Rakovic A et al..
Mutant parkin impairs mitochondrial function and morphology in human fibroblasts.
PLoS ONE.
2010;
5
(9)
e12962
MissingFormLabel
- 21
Shin J H, Ko H S, Kang H et al..
PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's
disease.
Cell.
2011;
144
(5)
689-702
MissingFormLabel
- 22
Vives-Bauza C, Zhou C, Huang Y et al..
PINK1-dependent recruitment of Parkin to mitochondria in mitophagy.
Proc Natl Acad Sci U S A.
2010;
107
(1)
378-383
MissingFormLabel
- 23
Klein C, Djarmati A, Hedrich K et al..
PINK1, Parkin, and DJ-1 mutations in Italian patients with early-onset parkinsonism.
Eur J Hum Genet.
2005;
13
(9)
1086-1093
MissingFormLabel
- 24
Steinlechner S, Stahlberg J, Völkel B et al..
Co-occurrence of affective and schizophrenia spectrum disorders with PINK1 mutations.
J Neurol Neurosurg Psychiatry.
2007;
78
(5)
532-535
MissingFormLabel
- 25
Li Y, Tomiyama H, Sato K et al..
Clinicogenetic study of PINK1 mutations in autosomal recessive early-onset parkinsonism.
Neurology.
2005;
64
(11)
1955-1957
MissingFormLabel
- 26
Valente E M, Salvi S, Ialongo T et al..
PINK1 mutations are associated with sporadic early-onset parkinsonism.
Ann Neurol.
2004;
56
(3)
336-341
MissingFormLabel
- 27
Valente E M, Abou-Sleiman P M, Caputo V et al..
Hereditary early-onset Parkinson's disease caused by mutations in PINK1.
Science.
2004;
304
(5674)
1158-1160
MissingFormLabel
- 28
Clark I E, Dodson M W, Jiang C et al..
Drosophila pink1 is required for mitochondrial function and interacts genetically
with parkin.
Nature.
2006;
441
(7097)
1162-1166
MissingFormLabel
- 29
Liu W, Acín-Peréz R, Geghman K D, Manfredi G, Lu B, Li C.
Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission.
Proc Natl Acad Sci U S A.
2011;
108
(31)
12920-12924
MissingFormLabel
- 30
Pankratz N, Pauciulo M W, Elsaesser V E Parkinson Study Group - PROGENI Investigators et al.
Mutations in DJ-1 are rare in familial Parkinson disease.
Neurosci Lett.
2006;
408
(3)
209-213
MissingFormLabel
- 31
Bonifati V, Rizzu P, van Baren M J et al..
Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism.
Science.
2003;
299
(5604)
256-259
MissingFormLabel
- 32
Takahashi-Niki K, Niki T, Taira T, Iguchi-Ariga S M, Ariga H.
Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson's disease
patients.
Biochem Biophys Res Commun.
2004;
320
(2)
389-397
MissingFormLabel
- 33
Malgieri G, Eliezer D.
Structural effects of Parkinson's disease linked DJ-1 mutations.
Protein Sci.
2008;
17
(5)
855-868
MissingFormLabel
- 34
Irrcher I, Aleyasin H, Seifert E L et al..
Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics.
Hum Mol Genet.
2010;
19
(19)
3734-3746
MissingFormLabel
- 35
Ramirez A, Heimbach A, Gründemann J et al..
Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding
a lysosomal type 5 P-type ATPase.
Nat Genet.
2006;
38
(10)
1184-1191
MissingFormLabel
- 36
Behrens M I, Brüggemann N, Chana P et al..
Clinical spectrum of Kufor-Rakeb syndrome in the Chilean kindred with ATP13A2 mutations.
Mov Disord.
2010;
25
(12)
1929-1937
MissingFormLabel
- 37
Park J S, Mehta P, Cooper A A et al..
Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing
Kufor-Rakeb syndrome, a form of early-onset parkinsonism.
Hum Mutat.
2011;
32
(8)
956-964
MissingFormLabel
- 38
Khan N L, Scherfler C, Graham E et al..
Dopaminergic dysfunction in unrelated, asymptomatic carriers of a single parkin mutation.
Neurology.
2005;
64
(1)
134-136
MissingFormLabel
- 39
Khan N L, Valente E M, Bentivoglio A R et al..
Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an
18F-dopa PET study.
Ann Neurol.
2002;
52
(6)
849-853
MissingFormLabel
- 40
Vilariño-Güell C, Wider C, Ross O A et al..
VPS35 mutations in Parkinson disease.
Am J Hum Genet.
2011;
89
(1)
162-167
MissingFormLabel
- 41
Zimprich A, Benet-Pagès A, Struhal W et al..
A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset
Parkinson disease.
Am J Hum Genet.
2011;
89
(1)
168-175
MissingFormLabel
- 42
Sidransky E, Nalls M A, Aasly J O et al..
Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease.
N Engl J Med.
2009;
361
(17)
1651-1661
MissingFormLabel
- 43
Mazzulli J R, Xu Y H, Sun Y et al..
Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic
loop in synucleinopathies.
Cell.
2011;
146
(1)
37-52
MissingFormLabel
- 44
Nalls M A, Plagnol V, Hernandez D G International Parkinson Disease Genomics Consortium et al.
Imputation of sequence variants for identification of genetic risks for Parkinson's
disease: a meta-analysis of genome-wide association studies.
Lancet.
2011;
377
(9766)
641-649
MissingFormLabel
- 45
Klein C, Ziegler A.
From GWAS to clinical utility in Parkinson's disease.
Lancet.
2011;
377
(9766)
613-614
MissingFormLabel
- 46 Lill C M, Roehr J T, McQueen M B et al.. The PDGene database. Alzheimer research forum. Available at: http://www.pdgene.org/ Accessed December 8, 2011
MissingFormLabel
- 47
Harbo H F, Finsterer J, Baets J EFNS et al.
EFNS guidelines on the molecular diagnosis of neurogenetic disorders: general issues,
Huntington's disease, Parkinson's disease and dystonias.
Eur J Neurol.
2009;
16
(7)
777-785
MissingFormLabel
- 48
Jacobs H, Latza U, Vieregge A, Vieregge P.
Attitudes of young patients with Parkinson's disease towards possible presymptomatic
and prenatal genetic testing.
Genet Couns.
2001;
12
(1)
55-67
MissingFormLabel
- 49
Nguyen H N, Byers B, Cord B et al..
LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative
stress.
Cell Stem Cell.
2011;
8
(3)
267-280
MissingFormLabel
- 50
Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D.
Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1
induced pluripotent stem cells.
J Neurosci.
2011;
31
(16)
5970-5976
MissingFormLabel
- 51
Rhee Y H, Ko J Y, Chang M Y et al..
Protein-based human iPS cells efficiently generate functional dopamine neurons and
can treat a rat model of Parkinson disease.
J Clin Invest.
2011;
121
(6)
2326-2335
MissingFormLabel
- 52
Caiazzo M, Dell'Anno M T, Dvoretskova E et al..
Direct generation of functional dopaminergic neurons from mouse and human fibroblasts.
Nature.
2011;
476
(7359)
224-227
MissingFormLabel
- 53
Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C.
Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2,
PINK1, PARK7, and LRRK2 genes: a mutation update.
Hum Mutat.
2010;
31
(7)
763-780
MissingFormLabel
- 54
Klein C, Schlossmacher M G.
The genetics of Parkinson disease: implications for neurological care.
Nat Clin Pract Neurol.
2006;
2
(3)
136-146
MissingFormLabel
Anne GrünewaldPh.D.
Section of Clinical and Molecular Neurogenetics, Department of Neurology, University
of Lübeck
Ratzeburger Allee 160, Lübeck 23538, Germany
eMail: anne.gruenewald@neuro.uni-luebeck.de