RSS-Feed abonnieren
DOI: 10.1055/s-0031-1299789
Genetics of Epilepsy
Publikationsverlauf
Publikationsdatum:
21. Januar 2012 (online)

ABSTRACT
Epilepsy is a common and very heterogeneous neurologic disorder. Genetic factors are likely to play a role in most cases, either because the underlying cause of epilepsy is primarily genetic or because genes modulate susceptibility to an epileptogenic insult. Primarily genetic epilepsies include conditions in which altered brain development or neurodegeneration are at the basis of seizures, but also conditions in which the brain is grossly normal, and the main, if not only, clinical feature is epilepsy. These are called idiopathic epilepsies, though this definition may change in the future. A few idiopathic epilepsies are monogenic disorders due to mutations in a variety of genes affecting neuronal excitability, synaptic transmission, or network development. Most cases have a complex etiology that combines predisposing genetic variants with nongenetic factors. Few of these have been identified so far and only in very few affected individuals, consisting mostly of deletions of critical chromosomal regions. Genetic factors also play a role in the response to antiepileptic drugs, affecting both their efficacy and their tolerability. There have been recent advances in discovering such factors, in particular those underlying risk to medication toxicity.
KEYWORDS
Epilepsy - Mendelian genetics - complex genetics - gene mapping - mutation analysis - genetic association studies - copy number variation - single nucleotide polymorphism - ion channel - neurotransmitter - brain development - brain metabolism - pharmacogenetics - drug response - drug toxicity
REFERENCES
- 1
Banerjee P N, Filippi D, Allen Hauser W.
The descriptive epidemiology of epilepsy-a review.
Epilepsy Res.
2009;
85
(1)
31-45
MissingFormLabel
- 2
Mullen S A, Scheffer I E.
Translational research in epilepsy genetics: sodium channels in man to interneuronopathy
in mouse.
Arch Neurol.
2009;
66
(1)
21-26
MissingFormLabel
- 3
Berkovic S F, Howell R A, Hay D A, Hopper J L.
Epilepsies in twins: genetics of the major epilepsy syndromes.
Ann Neurol.
1998;
43
(4)
435-445
MissingFormLabel
- 4
Poduri A, Lowenstein D.
Epilepsy genetics—past, present, and future.
Curr Opin Genet Dev.
2011;
21
(3)
325-332
MissingFormLabel
- 5
Commission on Classification and Terminology of the International League Against Epilepsy .
Proposal for revised classification of epilepsies and epileptic syndromes.
Epilepsia.
1989;
30
(4)
389-399
MissingFormLabel
- 6
Berg A T, Berkovic S F, Brodie M J et al..
Revised terminology and concepts for organization of seizures and epilepsies: report
of the ILAE Commission on Classification and Terminology, 2005-2009.
Epilepsia.
2010;
51
(4)
676-685
MissingFormLabel
- 7
Nakayama J.
Progress in searching for the febrile seizure susceptibility genes.
Brain Dev.
2009;
31
(5)
359-365
MissingFormLabel
- 8
Wallace R H, Berkovic S F, Howell R A, Sutherland G R, Mulley J C.
Suggestion of a major gene for familial febrile convulsions mapping to 8q13-21.
J Med Genet.
1996;
33
(4)
308-312
MissingFormLabel
- 9
Johnson E W, Dubovsky J, Rich S S et al..
Evidence for a novel gene for familial febrile convulsions, FEB2, linked to chromosome
19p in an extended family from the Midwest.
Hum Mol Genet.
1998;
7
(1)
63-67
MissingFormLabel
- 10
Peiffer A, Thompson J, Charlier C et al..
A locus for febrile seizures (FEB3) maps to chromosome 2q23-24.
Ann Neurol.
1999;
46
(4)
671-678
MissingFormLabel
- 11
Nakayama J, Hamano K, Iwasaki N et al..
Significant evidence for linkage of febrile seizures to chromosome 5q14-q15.
Hum Mol Genet.
2000;
9
(1)
87-91
MissingFormLabel
- 12
Nabbout R, Prud'homme J-F, Herman A et al..
A locus for simple pure febrile seizures maps to chromosome 6q22-q24.
Brain.
2002;
125
(Pt 12)
2668-2680
MissingFormLabel
- 13
Nakayama J, Yamamoto N, Hamano K et al..
Linkage and association of febrile seizures to the IMPA2 gene on human chromosome
18.
Neurology.
2004;
63
(10)
1803-1807
MissingFormLabel
- 14
Siren A, Nuutila A, Anttonen A et al..
Febrile seizures and idiopathic epilepsy: a clinical and genetic study in a Finnish
family.
Epilepsia.
2006;
47
12
MissingFormLabel
- 15
Scheffer I E, Berkovic S F.
Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous
clinical phenotypes.
Brain.
1997;
120
(Pt 3)
479-490
MissingFormLabel
- 16
Bonanni P, Malcarne M, Moro F et al..
Generalized epilepsy with febrile seizures plus (GEFS+): clinical spectrum in seven
Italian families unrelated to SCN1A, SCN1B, and GABRG2 gene mutations.
Epilepsia.
2004;
45
(2)
149-158
MissingFormLabel
- 17
Ito M, Yamakawa K, Sugawara T, Hirose S, Fukuma G, Kaneko S.
Phenotypes and genotypes in epilepsy with febrile seizures plus.
Epilepsy Res.
2006;
70
(Suppl 1)
S199-S205
MissingFormLabel
- 18 Scheffer I, Berkovic S. Generalized (genetic) epilepsy with febrile seizures plus. In: Engel J, Pedley T eds.. Epilepsy: A Comprehensive Textbook. Philadelphia: Lippincott, Williams & Wilkins; 2008: 2553-2558
MissingFormLabel
- 19
Wallace R H, Wang D W, Singh R et al..
Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel
beta1 subunit gene SCN1B.
Nat Genet.
1998;
19
(4)
366-370
MissingFormLabel
- 20
Gambardella A, Marini C.
Clinical spectrum of SCN1A mutations.
Epilepsia.
2009;
50
(Suppl 5)
20-23
MissingFormLabel
- 21
Macdonald R L, Kang J Q, Gallagher M J.
Mutations in GABAA receptor subunits associated with genetic epilepsies.
J Physiol.
2010;
588
(Pt 11)
1861-1869
MissingFormLabel
- 22
Marini C, Mei D, Parmeggiani L et al..
Protocadherin 19 mutations in girls with infantile-onset epilepsy.
Neurology.
2010;
75
(7)
646-653
MissingFormLabel
- 23
Depienne C, Trouillard O, Bouteiller D et al..
Mutations and deletions in PCDH19 account for various familial or isolated epilepsies
in females.
Hum Mutat.
2011;
32
(1)
E1959-E1975
MissingFormLabel
- 24
Dravet C.
Les épilepsies graves de l'enfant.
Vie Med.
1978;
8
543-548
MissingFormLabel
- 25
Dravet C.
The core Dravet syndrome phenotype.
Epilepsia.
2011;
52
(Suppl 2)
3-9
MissingFormLabel
- 26
Zupanc M L.
Clinical evaluation and diagnosis of severe epilepsy syndromes of early childhood.
J Child Neurol.
2009;
24
(8, Suppl)
6S-14S
MissingFormLabel
- 27
Ohtahara S et al..
On the specific age dependent epileptic syndrome: the early- infantile epileptic encephalopathy
with suppression-burst. [in Japanese with English abstract].
No To Hattatsu.
1976;
8
270-279
MissingFormLabel
- 28
Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P.
De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy
of infancy.
Am J Hum Genet.
2001;
68
(6)
1327-1332
MissingFormLabel
- 29
Marini C, Scheffer I E, Nabbout R et al..
The genetics of Dravet syndrome.
Epilepsia.
2011;
52
(Suppl 2)
24-29
MissingFormLabel
- 30
Scheffer I E, Zhang Y-H, Jansen F E, Dibbens L.
Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus?.
Brain Dev.
2009;
31
(5)
394-400
MissingFormLabel
- 31
Marini C, Scheffer I E, Nabbout R et al..
SCN1A duplications and deletions detected in Dravet syndrome: implications for molecular
diagnosis.
Epilepsia.
2009;
50
(7)
1670-1678
MissingFormLabel
- 32
Kamiya K, Kaneda M, Sugawara T et al..
A nonsense mutation of the sodium channel gene SCN2A in a patient with intractable
epilepsy and mental decline.
J Neurosci.
2004;
24
(11)
2690-2698
MissingFormLabel
- 33
Yu F H, Mantegazza M, Westenbroek R E et al..
Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic
epilepsy in infancy.
Nat Neurosci.
2006;
9
(9)
1142-1149
MissingFormLabel
- 34
Martin M S, Dutt K, Papale L A et al..
Altered function of the SCN1A voltage-gated sodium channel leads to gamma-aminobutyric
acid-ergic (GABAergic) interneuron abnormalities.
J Biol Chem.
2010;
285
(13)
9823-9834
MissingFormLabel
- 35
Madia F, Gennaro E, Cecconi M et al..
No evidence of GABRG2 mutations in severe myoclonic epilepsy of infancy.
Epilepsy Res.
2003;
53
(3)
196-200
MissingFormLabel
- 36
Kelley S A, Kossoff E H.
Doose syndrome (myoclonic-astatic epilepsy): 40 years of progress.
Dev Med Child Neurol.
2010;
52
(11)
988-993
MissingFormLabel
- 37
Kossoff E H.
Infantile spasms.
Neurologist.
2010;
16
(2)
69-75
MissingFormLabel
- 38
Shoubridge C, Fullston T, Gécz J.
ARX spectrum disorders: making inroads into the molecular pathology.
Hum Mutat.
2010;
31
(8)
889-900
MissingFormLabel
- 39
Kato M, Saitoh S, Kamei A et al..
A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic
encephalopathy with suppression-burst pattern (Ohtahara syndrome).
Am J Hum Genet.
2007;
81
(2)
361-366
MissingFormLabel
- 40
Castrén M, Gaily E, Tengström C et al..
Epilepsy caused by CDKL5 mutations.
Eur J Paediatr Neurol.
2011;
15
(1)
65-69
MissingFormLabel
- 41
Saitsu H, Kato M, Mizuguchi T et al..
De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic
encephalopathy.
Nat Genet.
2008;
40
(6)
782-788
MissingFormLabel
- 42
Mignot C, Moutard M L, Trouillard O et al..
STXBP1-related encephalopathy presenting as infantile spasms and generalized tremor
in three patients.
Epilepsia.
2011;
52
(10)
1820-1827
MissingFormLabel
- 43
Saitsu H, Kato M, Okada I et al..
STXBP1 mutations in early infantile epileptic encephalopathy with suppression-burst
pattern.
Epilepsia.
2010;
51
(12)
2397-2405
MissingFormLabel
- 44
Kurian M A, Meyer E, Vassallo G et al..
Phospholipase C beta 1 deficiency is associated with early-onset epileptic encephalopathy.
Brain.
2010;
133
(10)
2964-2970
MissingFormLabel
- 45
Kim D, Jun K S, Lee S B et al..
Phospholipase C isozymes selectively couple to specific neurotransmitter receptors.
Nature.
1997;
389
(6648)
290-293
MissingFormLabel
- 46
Hannan A J, Blakemore C, Katsnelson A et al..
PLC-beta1, activated via mGluRs, mediates activity-dependent differentiation in cerebral
cortex.
Nat Neurosci.
2001;
4
(3)
282-288
MissingFormLabel
- 47
Böhm D, Schwegler H, Kotthaus L et al..
Disruption of PLC-beta 1-mediated signal transduction in mutant mice causes age-dependent
hippocampal mossy fiber sprouting and neurodegeneration.
Mol Cell Neurosci.
2002;
21
(4)
584-601
MissingFormLabel
- 48
Mulley J C, Heron S E, Dibbens L M.
Proposed genetic classification of the “benign” familial neonatal and infantile epilepsies.
Epilepsia.
2011;
52
(3)
649-650
MissingFormLabel
- 49
Yamamoto H, Okumura A, Fukuda M.
Epilepsies and epileptic syndromes starting in the neonatal period.
Brain Dev.
2011;
33
(3)
213-220
MissingFormLabel
- 50
Singh N A, Westenskow P, Charlier C BFNC Physician Consortium et al.
KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion
of the functional and mutation spectrum.
Brain.
2003;
126
(Pt 12)
2726-2737
MissingFormLabel
- 51
Volkers L, Rook M B, Das JHG et al..
Functional analysis of novel KCNQ2 mutations found in patients with benign familial
neonatal convulsions.
Neurosci Lett.
2009;
462
(1)
24-29
MissingFormLabel
- 52
Soldovieri M V, Cilio M R, Miceli F et al..
Atypical gating of M-type potassium channels conferred by mutations in uncharged residues
in the S4 region of KCNQ2 causing benign familial neonatal convulsions.
J Neurosci.
2007;
27
(18)
4919-4928
MissingFormLabel
- 53
Tzingounis A V, Nicoll R A.
Contribution of KCNQ2 and KCNQ3 to the medium and slow afterhyperpolarization currents.
Proc Natl Acad Sci U S A.
2008;
105
(50)
19974-19979
MissingFormLabel
- 54
Kanaumi T, Takashima S, Iwasaki H et al..
Developmental changes in KCNQ2 and KCNQ3 expression in human brain: possible contribution
to the age-dependent etiology of benign familial neonatal convulsions.
Brain Dev.
2008;
30
(5)
362-369
MissingFormLabel
- 55
Heron S E, Crossland K M, Andermann E et al..
Sodium-channel defects in benign familial neonatal-infantile seizures.
Lancet.
2002;
360
(9336)
851-852
MissingFormLabel
- 56
Liao Y, Anttonen A-K, Liukkonen E et al..
SCN2A mutation associated with neonatal epilepsy, late-onset episodic ataxia, myoclonus,
and pain.
Neurology.
2010;
75
(16)
1454-1458
MissingFormLabel
- 57
Guipponi M, Rivier F, Vigevano F et al..
Linkage mapping of benign familial infantile convulsions (BFIC) to chromosome 19q.
Hum Mol Genet.
1997;
6
(3)
473-477
MissingFormLabel
- 58
Swoboda K J, Soong B, McKenna C et al..
Paroxysmal kinesigenic dyskinesia and infantile convulsions: clinical and linkage
studies.
Neurology.
2000;
55
(2)
224-230
MissingFormLabel
- 59
Vanmolkot KRJ, Kors E E, Hottenga J-J et al..
Novel mutations in the Na+, K+-ATPase pump gene ATP1A2 associated with familial hemiplegic
migraine and benign familial infantile convulsions.
Ann Neurol.
2003;
54
(3)
360-366
MissingFormLabel
- 60
Falace A, Filipello F, La Padula V et al..
TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy.
Am J Hum Genet.
2010;
87
(3)
365-370
MissingFormLabel
- 61
Pan X, Eathiraj S, Munson M, Lambright D G.
TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism.
Nature.
2006;
442
(7100)
303-306
MissingFormLabel
- 62
Frittoli E, Palamidessi A, Pizzigoni A et al..
The primate-specific protein TBC1D3 is required for optimal macropinocytosis in a
novel ARF6-dependent pathway.
Mol Biol Cell.
2008;
19
(4)
1304-1316
MissingFormLabel
- 63
Jaworski J.
ARF6 in the nervous system.
Eur J Cell Biol.
2007;
86
(9)
513-524
MissingFormLabel
- 64
Corbett M A, Bahlo M, Jolly L et al..
A focal epilepsy and intellectual disability syndrome is due to a mutation in TBC1D24.
Am J Hum Genet.
2010;
87
(3)
371-375
MissingFormLabel
- 65
Suzuki T, Delgado-Escueta A V, Aguan K et al..
Mutations in EFHC1 cause juvenile myoclonic epilepsy.
Nat Genet.
2004;
36
(8)
842-849
MissingFormLabel
- 66
Ma S, Blair M A, Abou-Khalil B et al..
Mutations in the GABRA1 and EFHC1 genes are rare in familial juvenile myoclonic epilepsy.
Epilepsy Res.
2006;
71
(2-3)
129-134
MissingFormLabel
- 67
Léon C, de Nijs L, Chanas G et al..
Distribution of EFHC1 or myoclonin 1 in mouse neural structures.
Epilepsy Res.
2010;
88
(2-3)
196-207
MissingFormLabel
- 68
Suzuki T, Inoue I, Yamagata T et al..
Sequential expression of Efhc1/myoclonin1 in choroid plexus and ependymal cell cilia.
Biochem Biophys Res Commun.
2008;
367
(1)
226-233
MissingFormLabel
- 69
Kamp M A, Krieger A, Henry M et al..
Presynaptic ‘Ca2.3-containing’ E-type Ca channels share dual roles during neurotransmitter
release.
Eur J Neurosci.
2005;
21
(6)
1617-1625
MissingFormLabel
- 70
de Nijs L, Léon C, Nguyen L et al..
EFHC1 interacts with microtubules to regulate cell division and cortical development.
Nat Neurosci.
2009;
12
(10)
1266-1274
MissingFormLabel
- 71
Betting L E, Mory S B, Lopes-Cendes I et al..
MRI reveals structural abnormalities in patients with idiopathic generalized epilepsy.
Neurology.
2006;
67
(5)
848-852
MissingFormLabel
- 72
Betting L E, Mory S B, Li L M et al..
Voxel-based morphometry in patients with idiopathic generalized epilepsies.
Neuroimage.
2006;
32
(2)
498-502
MissingFormLabel
- 73
Tae W S, Kim S H, Joo E Y et al..
Cortical thickness abnormality in juvenile myoclonic epilepsy.
J Neurol.
2008;
255
(4)
561-566
MissingFormLabel
- 74
Cossette P, Liu L, Brisebois K et al..
Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy.
Nat Genet.
2002;
31
(2)
184-189
MissingFormLabel
- 75
Escayg A, De Waard M, Lee D D et al..
Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4
in patients with idiopathic generalized epilepsy and episodic ataxia.
Am J Hum Genet.
2000;
66
(5)
1531-1539
MissingFormLabel
- 76
Haug K, Warnstedt M, Alekov A K et al..
Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic
generalized epilepsies.
Nat Genet.
2003;
33
(4)
527-532
MissingFormLabel
- 77
Kleefuss-Lie A, Friedl W, Cichon S et al..
CLCN2 variants in idiopathic generalized epilepsy.
Nat Genet.
2009;
41
(9)
954-955
MissingFormLabel
- 78
Niemeyer M I, Cid L P, Sepúlveda F V, Blanz J, Auberson M, Jentsch T J.
No evidence for a role of CLCN2 variants in idiopathic generalized epilepsy.
Nat Genet.
2010;
42
(1)
3
MissingFormLabel
- 79
Sander T, Schulz H, Saar K et al..
Genome search for susceptibility loci of common idiopathic generalised epilepsies.
Hum Mol Genet.
2000;
9
(10)
1465-1472
MissingFormLabel
- 80
D'Agostino D, Bertelli M, Gallo S et al..
Mutations and polymorphisms of the CLCN2 gene in idiopathic epilepsy.
Neurology.
2004;
63
(8)
1500-1502
MissingFormLabel
- 81
Wallace R H, Marini C, Petrou S et al..
Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures.
Nat Genet.
2001;
28
(1)
49-52
MissingFormLabel
- 82
Mullen S A, Suls A, De Jonghe P, Berkovic S F, Scheffer I E.
Absence epilepsies with widely variable onset are a key feature of familial GLUT1
deficiency.
Neurology.
2010;
75
(5)
432-440
MissingFormLabel
- 83
Suls A, Mullen S A, Weber Y G et al..
Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1.
Ann Neurol.
2009;
66
(3)
415-419
MissingFormLabel
- 84
Seidner G, Alvarez M G, Yeh J I et al..
GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier
hexose carrier.
Nat Genet.
1998;
18
(2)
188-191
MissingFormLabel
- 85
Suls A, Dedeken P, Goffin K et al..
Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1,
encoding the glucose transporter GLUT1.
Brain.
2008;
131
(Pt 7)
1831-1844
MissingFormLabel
- 86
Brockmann K.
The expanding phenotype of GLUT1-deficiency syndrome.
Brain Dev.
2009;
31
(7)
545-552
MissingFormLabel
- 87
Steinlein O K, Mulley J C, Propping P et al..
A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit
is associated with autosomal dominant nocturnal frontal lobe epilepsy.
Nat Genet.
1995;
11
(2)
201-203
MissingFormLabel
- 88
Aridon P, Marini C, Di Resta C et al..
Increased sensitivity of the neuronal nicotinic receptor alpha 2 subunit causes familial
epilepsy with nocturnal wandering and ictal fear.
Am J Hum Genet.
2006;
79
(2)
342-350
MissingFormLabel
- 89
De Fusco M, Becchetti A, Patrignani A et al..
The nicotinic receptor beta 2 subunit is mutant in nocturnal frontal lobe epilepsy.
Nat Genet.
2000;
26
(3)
275-276
MissingFormLabel
- 90
Combi R, Dalprà L, Malcovati M et al..
Evidence for a fourth locus for autosomal dominant nocturnal frontal lobe epilepsy.
Brain Res Bull.
2004;
63
(5)
353-359
MissingFormLabel
- 91
Klaassen A, Glykys J, Maguire J et al..
Seizures and enhanced cortical GABAergic inhibition in two mouse models of human autosomal
dominant nocturnal frontal lobe epilepsy.
Proc Natl Acad Sci U S A.
2006;
103
(50)
19152-19157
MissingFormLabel
- 92
Crompton D E, Scheffer I E, Taylor I et al..
Familial mesial temporal lobe epilepsy: a benign epilepsy syndrome showing complex
inheritance.
Brain.
2010;
133
(11)
3221-3231
MissingFormLabel
- 93
Kalachikov S, Evgrafov O, Ross B et al..
Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features.
Nat Genet.
2002;
30
(3)
335-341
MissingFormLabel
- 94
Scheel H, Tomiuk S, Hofmann K.
A common protein interaction domain links two recently identified epilepsy genes.
Hum Mol Genet.
2002;
11
(15)
1757-1762
MissingFormLabel
- 95
Sirerol-Piquer M S, Ayerdi-Izquierdo A, Morante-Redolat J M et al..
The epilepsy gene LGI1 encodes a secreted glycoprotein that binds to the cell surface.
Hum Mol Genet.
2006;
15
(23)
3436-3445
MissingFormLabel
- 96
Ribeiro PAO, Sbragia L, Gilioli R et al..
Expression profile of Lgi1 gene in mouse brain during development.
J Mol Neurosci.
2008;
35
(3)
323-329
MissingFormLabel
- 97
Owuor K, Harel N Y, Englot D J et al..
LGI1-associated epilepsy through altered ADAM23-dependent neuronal morphology.
Mol Cell Neurosci.
2009;
42
(4)
448-457
MissingFormLabel
- 98
Fukata Y, Lovero K L, Iwanaga T et al..
Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and
epilepsy.
Proc Natl Acad Sci U S A.
2010;
107
(8)
3799-3804
MissingFormLabel
- 99
Yu Y E, Wen L, Silva J et al..
Lgi1 null mutant mice exhibit myoclonic seizures and CA1 neuronal hyperexcitability.
Hum Mol Genet.
2010;
19
(9)
1702-1711
MissingFormLabel
- 100
Lai M, Huijbers MGM, Lancaster E et al..
Investigation of LGI1 as the antigen in limbic encephalitis previously attributed
to potassium channels: a case series.
Lancet Neurol.
2010;
9
(8)
776-785
MissingFormLabel
- 101
Irani S R, Alexander S, Waters P et al..
Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated
1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome
and acquired neuromyotonia.
Brain.
2010;
133
(9)
2734-2748
MissingFormLabel
- 102
Berkovic S F, McIntosh A, Howell R A et al..
Familial temporal lobe epilepsy: a common disorder identified in twins.
Ann Neurol.
1996;
40
(2)
227-235
MissingFormLabel
- 103
Hedera P, Blair M A, Andermann E et al..
Familial mesial temporal lobe epilepsy maps to chromosome 4q13.2-q21.3
Neurology.
2007;
68
(24)
2107-2112
MissingFormLabel
- 104
Baulac S, Picard F, Herman A et al..
Evidence for digenic inheritance in a family with both febrile convulsions and temporal
lobe epilepsy implicating chromosomes 18qter and 1q25-q31.
Ann Neurol.
2001;
49
(6)
786-792
MissingFormLabel
- 105
Claes L, Audenaert D, Deprez L et al..
Novel locus on chromosome 12q22-q23.3 responsible for familial temporal lobe epilepsy
associated with febrile seizures.
J Med Genet.
2004;
41
(9)
710-714
MissingFormLabel
- 106
Xiong L, Labuda M, Li D S et al..
Mapping of a gene determining familial partial epilepsy with variable foci to chromosome
22q11-q12.
Am J Hum Genet.
1999;
65
(6)
1698-1710
MissingFormLabel
- 107
Berkovic S F, Serratosa J M, Phillips H A et al..
Familial partial epilepsy with variable foci: clinical features and linkage to chromosome
22q12.
Epilepsia.
2004;
45
(9)
1054-1060
MissingFormLabel
- 108
Manzini M C, Walsh C.
What disorders of cortical development tell us about the cortex: one plus one does
not always make two.
Curr Opin Genet Dev.
2011;
21
(3)
333-339
MissingFormLabel
- 109
Pal D K, Pong A W, Chung W K.
Genetic evaluation and counseling for epilepsy.
Nat Rev Neurol.
2010;
16
(8)
445-453
MissingFormLabel
- 110
Altshuler D, Daly M J, Lander E S.
Genetic mapping in human disease.
Science.
2008;
322
(5903)
881-888
MissingFormLabel
- 111
Shields R.
Common disease: are causative alleles common or rare?.
PLoS Biol.
2011;
9
(1)
e1001009
MissingFormLabel
- 112
Chen Y, Lu J, Pan H et al..
Association between genetic variation of CACNA1H and childhood absence epilepsy.
Ann Neurol.
2003;
54
(2)
239-243
MissingFormLabel
- 113
Chioza B, Everett K, Aschauer H et al..
Evaluation of CACNA1H in European patients with childhood absence epilepsy.
Epilepsy Res.
2006;
69
(2)
177-181
MissingFormLabel
- 114
Liang J, Zhang Y, Chen Y et al..
Common polymorphisms in the CACNA1H gene associated with childhood absence epilepsy
in Chinese Han population.
Ann Hum Genet.
2007;
71
(Pt 3)
325-335
MissingFormLabel
- 115
Pal D K, Evgrafov O V, Tabares P et al..
BRD2 (RING3) is a probable major susceptibility gene for common juvenile myoclonic
epilepsy.
Am J Hum Genet.
2003;
73
(2)
261-270
MissingFormLabel
- 116
Greenberg D A, Cayanis E, Strug L et al..
Malic enzyme 2 may underlie susceptibility to adolescent-onset idiopathic generalized
epilepsy.
Am J Hum Genet.
2005;
76
(1)
139-146
MissingFormLabel
- 117
Cavalleri G L, Weale M E, Shianna K V et al..
Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and
seizure types: a case-control study.
Lancet Neurol.
2007;
6
(11)
970-980
MissingFormLabel
- 118
Lenzen K P, Heils A, Lorenz S, Hempelmann A, Sander T.
Association analysis of malic enzyme 2 gene polymorphisms with idiopathic generalized
epilepsy.
Epilepsia.
2005;
46
(10)
1637-1641
MissingFormLabel
- 119
Cavalleri G L, Weale M E, Shianna K V et al..
Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and
seizure types: a case-control study.
Lancet Neurol.
2007;
6
(11)
970-980
MissingFormLabel
- 120
Mulley J C, Mefford H C.
Epilepsy and the new cytogenetics.
Epilepsia.
2011;
52
(3)
423-432
MissingFormLabel
- 121
Helbig I, Mefford H C, Sharp A J et al..
15q13.3 microdeletions increase risk of idiopathic generalized epilepsy.
Nat Genet.
2009;
41
(2)
160-162
MissingFormLabel
- 122
Mefford H C, Muhle H, Ostertag P et al..
Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic
generalized and focal epilepsies.
PLoS Genet.
2010;
6
(5)
e1000962
MissingFormLabel
- 123
Heinzen E L, Radtke R A, Urban T J et al..
Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes.
Am J Hum Genet.
2010;
86
(5)
707-718
MissingFormLabel
- 124
Kasperaviciūte D, Catarino C B, Heinzen E L et al..
Common genetic variation and susceptibility to partial epilepsies: a genome-wide association
study.
Brain.
2010;
133
(Pt 7)
2136-2147
MissingFormLabel
- 125
Depondt C.
Pharmacogenetics in neuropsychiatric diseases: epilepsy as a model.
Acta Neurol Belg.
2006;
106
(4)
157-167
MissingFormLabel
- 126
Löscher W, Klotz U, Zimprich F, Schmidt D.
The clinical impact of pharmacogenetics on the treatment of epilepsy.
Epilepsia.
2009;
50
(1)
1-23
MissingFormLabel
- 127
Siddiqui A, Kerb R, Weale M E et al..
Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter
gene ABCB1.
N Engl J Med.
2003;
348
(15)
1442-1448
MissingFormLabel
- 128
Löscher W, Delanty N.
MDR1/ABCB1 polymorphisms and multidrug resistance in epilepsy: in and out of fashion.
Pharmacogenomics.
2009;
10
(5)
711-713
MissingFormLabel
- 129
Anderson G D.
Pharmacokinetic, pharmacodynamic, and pharmacogenetic targeted therapy of antiepileptic
drugs.
Ther Drug Monit.
2008;
30
(2)
173-180
MissingFormLabel
- 130
Depondt C, Godard P, Espel R S, Da Cruz A L, Lienard P, Pandolfo M.
A candidate gene study of antiepileptic drug tolerability and efficacy identifies
an association of CYP2C9 variants with phenytoin toxicity.
Eur J Neurol.
2011;
18
(9)
1159-1164
MissingFormLabel
- 131
Tate S K, Singh R, Hung C-C et al..
A common polymorphism in the SCN1A gene associates with phenytoin serum levels at
maintenance dose.
Pharmacogenet Genomics.
2006;
16
(10)
721-726
MissingFormLabel
- 132
Abe T, Seo T, Ishitsu T, Nakagawa T, Hori M, Nakagawa K.
Association between SCN1A polymorphism and carbamazepine-resistant epilepsy.
Br J Clin Pharmacol.
2008;
66
(2)
304-307
MissingFormLabel
- 133
Manna I, Gambardella A, Bianchi A et al..
A functional polymorphism in the SCN1A gene does not influence antiepileptic drug
responsiveness in Italian patients with focal epilepsy.
Epilepsia.
2011;
52
(5)
e40-e44
MissingFormLabel
- 134
Pirmohamed M, Lin K, Chadwick D, Park B K.
TNFalpha promoter region gene polymorphisms in carbamazepine-hypersensitive patients.
Neurology.
2001;
56
(7)
890-896
MissingFormLabel
- 135
Chung W-H, Hung S-I, Hong H-S et al..
Medical genetics: a marker for Stevens-Johnson syndrome.
Nature.
2004;
428
(6982)
486
MissingFormLabel
- 136
Chen P, Lin J-J, Lu C-S Taiwan SJS Consortium et al.
Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan.
N Engl J Med.
2011;
364
(12)
1126-1133
MissingFormLabel
- 137
Ozeki T, Mushiroda T, Yowang A et al..
Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor
for carbamazepine-induced cutaneous adverse drug reactions in Japanese population.
Hum Mol Genet.
2011;
20
(5)
1034-1041
MissingFormLabel
- 138
McCormack M, Alfirevic A, Bourgeois S et al..
HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans.
N Engl J Med.
2011;
364
(12)
1134-1143
MissingFormLabel
- 139
Lee H Y, Huang Y, Bruneau N et al..
Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile
convulsions.
Cell Reports.
2012;
1
1-11
MissingFormLabel
Truncating mutations involving the gene PRRT2 have been identified in the vast majority of well-characterized families with Paroxysmal Kinesigenic Dyskinesia with Infantile Convulsions. PRRT2 encodes a proline-rich transmembrane protein of unknown function that has been reported to interact with the synaptic proteins.[139]
Massimo PandolfoM.D.
Department of Neurology, Université Libre de Bruxelles, Hôpital Erasme
Route de Lennik 808, 1070 Brussels, Belgium
eMail: Massimo.pandolfo@ulb.ac.be