Exp Clin Endocrinol Diabetes 2012; 120(04): 194-196
DOI: 10.1055/s-0032-1304580
Mini-Review Series on Diabetes and its Complications
© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Macrovascular Disease in Diabetes: Is the Mouse a Suitable Model?

O. J. Müller
1   Department of Cardiology, UniversityHospital, Heidelberg, Germany
,
H. A. Katus
1   Department of Cardiology, UniversityHospital, Heidelberg, Germany
,
J. Backs
1   Department of Cardiology, UniversityHospital, Heidelberg, Germany
› Author Affiliations
Further Information

Publication History

received 30 January 2012
first decision 30 January 2012

accepted 31 January 2012

Publication Date:
08 March 2012 (online)

Abstract

To elucidate the pathogenesis of macrovascular disease in diabetes, animal models are widely used. Diabetic mice are of particular interest because they can be crossed to knockout mice lacking specific genes that are under consideration to contribute to diabetic vascular complications. However, the mouse is relative resistant to develop atherosclerosis. Therefore, we review some commonly used mouse models and discuss their advantages and disadvantages.

 
  • References

  • 1 Hsueh W, Abel ED, Breslow JL et al. Recipes for creating animal models of diabetic cardiovascular disease. Circ Res 2007; 100: 1415-1427
  • 2 Wu KK, Huan Y. Diabetic atherosclerosis mouse models. Atherosclerosis 2007; 191: 241-249
  • 3 Schreyer SA, Vick C, Lystig TC et al. LDL receptor but not apolipoprotein E deficiency increases diet-induced obesity and diabetes in mice. Am J Physiol Endocrinol Metab 2002; 282: E207-E214
  • 4 MacLean PS, Bower JF, Vadlamudi S et al. Cholesteryl ester transfer protein expression prevents diet-induced atherosclerotic lesions in male db/db mice. Arterioscler Thromb Vasc Biol 2003; 23: 1412-1415
  • 5 Mirhashemi F, Scherneck S, Kluth O et al. Diet dependence of diabetes in the New Zealand Obese (NZO) mouse: total fat, but not fat quality or sucrose accelerates and aggravates diabetes. Exp Clin Endocrinol Diabetes 2011; 119: 167-171
  • 6 Heinonen SE, Leppanen P, Kholova I et al. Increased atherosclerotic lesion calcification in a novel mouse model combining insulin resistance, hyperglycemia, and hypercholesterolemia. Circ Res 2007; 101: 1058-1067
  • 7 Zhang S, Picard MH, Vasile E et al. Diet-induced occlusive coronary atherosclerosis, myocardial infarction, cardiac dysfunction, and premature death in scavenger receptor class B type I-deficient, hypomorphic apolipoprotein ER61 mice. Circulation 2005; 111: 3457-3464
  • 8 Ingersoll MA, Spanbroek R, Lottaz C et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 2010; 115: e10-e19
  • 9 Goldberg IJ, Dansky HM. Diabetic vascular disease: an experimental objective. Arterioscler Thromb Vasc Biol 2006; 26: 1693-1701
  • 10 Pirola L, Balcerczyk A, Okabe J et al. Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 2010; 6: 665-675
  • 11 Rabbani N, Thornalley PJ. Glyoxalase in diabetes, obesity and related disorders. Semin Cell Dev Biol 2011; 22: 309-317
  • 12 Muhammad S, Bierhaus A, Schwaninger M. Reactive oxygen species in diabetes-induced vascular damage, stroke, and Alzheimer’s disease. J Alzheimers Dis 2009; 16: 775-785
  • 13 Wendt T, Harja E, Bucciarelli L et al. RAGE modulates vascular inflammation and atherosclerosis in a murine model of type 2 diabetes. Atherosclerosis 2006; 185: 70-77
  • 14 Otero P, Bonet B, Herrera E et al. Development of atherosclerosis in the diabetic BALB/c mice. Prevention with Vitamin E administration. Atherosclerosis 2005; 182: 259-265
  • 15 Kunjathoor VV, Wilson DL, LeBoeuf RC. Increased atherosclerosis in streptozotocin-induced diabetic mice. J Clin Invest 1996; 97: 1767-1773
  • 16 Park L, Raman KG, Lee KJ et al. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 1998; 4: 1025-1031
  • 17 Kako Y, Masse M, Huang LS et al. Lipoprotein lipase deficiency and CETP in streptozotocin-treated apoB-expressing mice. J Lipid Res 2002; 43: 872-877
  • 18 Reaven P, Merat S, Casanada F et al. Effect of streptozotocin-induced hyperglycemia on lipid profiles, formation of advanced glycation endproducts in lesions, and extent of atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 1997; 17: 2250-2256
  • 19 Renard CB, Kramer F, Johansson F et al. Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions. J Clin Invest 2004; 114: 659-668
  • 20 Merat S, Casanada F, Sutphin M et al. Western-type diets induce insulin resistance and hyperinsulinemia in LDL receptor-deficient mice but do not increase aortic atherosclerosis compared with normoinsulinemic mice in which similar plasma cholesterol levels are achieved by a fructose-rich diet. Arterioscler Thromb Vasc Biol 1999; 19: 1223-1230
  • 21 Phillips JW, Barringhaus KG, Sanders JM et al. Rosiglitazone reduces the accelerated neointima formation after arterial injury in a mouse injury model of type 2 diabetes. Circulation 2003; 108: 1994-1999
  • 22 Smith JD, James D, Dansky HM et al. In silico quantitative trait locus map for atherosclerosis susceptibility in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2003; 23: 117-122
  • 23 Schreyer SA, Wilson DL, LeBoeuf RC. C57BL/6 mice fed high fat diets as models for diabetes-accelerated atherosclerosis. Atherosclerosis 1998; 136: 17-24
  • 24 Dansky HM, Charlton SA, Sikes JL et al. Genetic background determines the extent of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 1999; 19: 1960-1968
  • 25 Gruen ML, Saraswathi V, Nuotio-Antar AM et al. Plasma insulin levels predict atherosclerotic lesion burden in obese hyperlipidemic mice. Atherosclerosis 2006; 186: 54-64
  • 26 Wu KK, Wu TJ, Chin J et al. Increased hypercholesterolemia and atherosclerosis in mice lacking both ApoE and leptin receptor. Atherosclerosis 2005; 181: 251-259
  • 27 Hasty AH, Shimano H, Osuga J et al. Severe hypercholesterolemia, hypertriglyceridemia, and atherosclerosis in mice lacking both leptin and the low density lipoprotein receptor. J Biol Chem 2001; 276: 37402-37408
  • 28 Castellani LW, Goto AM, Lusis AJ. Studies with apolipoprotein A-II transgenic mice indicate a role for HDLs in adiposity and insulin resistance. Diabetes 2001; 50: 643-651
  • 29 Federici M, Hribal ML, Menghini R et al. Timp3 deficiency in insulin receptor-haploinsufficient mice promotes diabetes and vascular inflammation via increased TNF-alpha. J Clin Invest 2005; 115: 3494-3505