Int J Sports Med 2012; 33(07): 555-560
DOI: 10.1055/s-0032-1304587
Training & Testing
© Georg Thieme Verlag KG Stuttgart · New York

3D Kinematic of Bunched, Medium and Elongated Sprint Start

J. Slawinski
1   Centre de Recherche sur le Sport et le Mouvement (CeRSM, EA 2931), UFR STAPS, Université de Paris Ouest Nanterre la Défense, Nanterre, France
,
R. Dumas
2   Laboratoire de Biomécanique et Mécanique des Chocs UMR_T9406, Université de Lyon, Villeurbanne, France
,
L. Cheze
2   Laboratoire de Biomécanique et Mécanique des Chocs UMR_T9406, Université de Lyon, Villeurbanne, France
,
G. Ontanon
3   Fédération Française d’Athlétisme, INSEP, Paris, France
,
C. Miller
4   TeamLagardère, Centre d’expertise, Paris, France
,
A. Mazure-Bonnefoy
5   Laboratoire de Cinésiologie Willy Taillard, Hopital Cantonal, Genève, Switzerland
› Author Affiliations
Further Information

Publication History



accepted after revision 16 January 2012

Publication Date:
12 April 2012 (online)

Abstract

The aim of this study was to test the influence of 3 different horizontal distances between the blocks (bunched, medium and elongated) on the velocity of the centre of mass (VCM) and the kinetic energy (KE) of the body segments and of the whole body. 9 well-trained sprinters performed 4 maximal 10 m sprints. An opto-electronic Motion Analysis® system (12 digital cameras 250 Hz) was used to collect the 3D trajectories of 63 markers during the starting block phase. The results demonstrated that the elongated start, compared to the bunched or medium start, induced an increase of VCM at block clearing (2.89±0.13; 2.76±0.11; 2.84±0.14 m.s − 1) and a decrease of the performance at 5 and 10 m. Both results were explained by a greater pushing time on the blocks in the elongated condition. During the starting block phase, the KE of the whole body was greater in the elongated start (324.3±48.0 J vs. 317.4±57.2 J, bunched and 302.1±53.2 J, medium). This greater KE of the whole body was mainly explained by the KE of the head-trunk segments. Thus, to improve the efficiency of the starting block phase, the athlete must produce greater KE of the head and trunk segments in the shortest time.

 
  • References

  • 1 Bezodis N, Salo A, Trewartha G. Choice of sprint start performance measure affects the performance-based ranking within a group of sprinters: which is the most appropriate measure?. Sports Biomech 2010; 9: 258-269
  • 2 Čoh M, Jošt B, Škof B, Tomažin K, Dolenec A. Kinematic and kinetic parameters of the sprint start and start acceleration model of top sprinters. Gymnica 1998; 28: 33-42
  • 3 Čoh M, Tomažin K, Štuhec S. The biomechanical model of the sprint start and block acceleration. Facta Universitatis – Physical Education and Sport 2006; 4: 103-114
  • 4 Dickinson AD. The effect of foot spacing on the starting time and speed in sprinting and the relation of physical measurements to foot spacing. Res Quart 1934; 5: 12-19
  • 5 Guissard N, Duchateau J, Hainaut K. EMG and mechanical changes during sprint starts at different front block obliquities. Med Sci Sports Exerc 1992; 24: 1257-1263
  • 6 Harland MJ, Steele JR. Biomechanics of the sprint start. Sports Med 1997; 23: 11-20
  • 7 Harriss DJ, Atkinson G. Update – Ethical standards in sport and exercise science research. Int J Sports Med 2011; 32: 819-821
  • 8 Henry MF. Force time characteristics of the sprint start. Res Quart 1952; 23: 301-318
  • 9 Hubley CL, Wells RP. A work-energy approach to determine individual joint contributions to vertical jump performance. Eur J Appl Physiol 1983; 50: 247-254
  • 10 Kisler JW. Study of the distribution of the force exerted upon the blocks in starting the sprint from various positions. Res Quart 1934; 5: 27-32
  • 11 Korchemny R. A new concept for sprint start and acceleration training. New Studies in Athletics 1992; 7: 65-72
  • 12 Kraan GA, van Veen J, Snijders CJ, Storm J. Starting from standing; why step backwards?. J Biomech 2001; 34: 211-215
  • 13 Mero A, Komi PV, Gregor RJ. Biomechanics of sprint running. A review. Sports Med 1992; 13: 376-392
  • 14 Mero A, Kuitunen S, Harland M, Kyrolainen H, Komi PV. Effects of muscle-tendon length on joint moment and power during sprint starts. J Sports Sci 2006; 24: 165-173
  • 15 Schot PK, Knutzen KM. A biomechanical analysis of four sprint start positions. Res Q Exerc Sport 1992; 63: 137-147
  • 16 Sigerseth P, Grinaker V. Effect of foot spacing on velocity in sprints. Res Quart 1962; 33: 599-606
  • 17 Slawinski J, Bonnefoy A, Ontanon G, Leveque JM, Miller C, Riquet A, Cheze L, Dumas R. Segment-interaction in sprint start: Analysis of 3D angular velocity and kinetic energy in elite sprinters. J Biomech 2010; 43: 1494-1502
  • 18 Slawinski J, Bonnefoy A, Leveque JM, Ontanon G, Riquet A, Dumas R, Cheze L. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start. J Strength Cond Res 2009; 24: 896-905