Ultraschall Med 2012; 33(5): 480-488
DOI: 10.1055/s-0032-1312819
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

A New Formula for Optimized Weight Estimation in Extreme Fetal Macrosomia (≥ 4500 g)

Eine neue Gewichtsschätzungsformel für Feten mit deutlich ausgeprägter Makrosomie (≥ 4500 g)
F. Faschingbauer
1   Gynäkologie und Geburtshilfe, Universitätsfrauenklinik, Erlangen
,
M. W. Beckmann
1   Gynäkologie und Geburtshilfe, Universitätsfrauenklinik, Erlangen
,
T. W. Goecke
1   Gynäkologie und Geburtshilfe, Universitätsfrauenklinik, Erlangen
,
B. Yazdi
2   Geburtshilfe und Pränatalmedizin, Universitätsfrauenklinik Tübingen
,
J. Siemer
3   Geburtshilfe und Pränatalmedizin, Krankenhaus Ludmillenstift, Meppen
,
M. Schmid
4   Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander University Erlangen-Nuremberg
,
A. Mayr
4   Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander University Erlangen-Nuremberg
,
R. L. Schild
5   Department of Obstetrics and Gynaecology, Diakonie Hospitals, Hannover
› Author Affiliations
Further Information

Publication History

04 December 2011

27 March 2012

Publication Date:
21 June 2012 (online)

Abstract

Purpose: To develop and to evaluate a specific sonographic weight formula for fetuses with extreme macrosomia (≥ 4500 g).

Materials and Methods: A statistical estimation technique known as “gradient boosting with component-wise P-splines” was applied to a group of 174 fetuses with a birth weight (BW) ≥ 4500 g. Each fetus underwent an ultrasound examination with complete biometric parameters within 7 days of delivery. The exclusion criteria were multiple pregnancy, intrauterine death, and major structural or chromosomal anomalies. A new formula was derived using the obtained data and was then compared to currently available equations for estimating weight in the macrosomic fetus.

Results: The new formula is: log10 (EFW) = 3.6687781710 – 0.0003 230 278 × (BPD – 100.4080) – 0.0000843433 × (BPD – 100.4080)^2 + 0.0007281 281 × (OFD – 120.6322) + 0.0000664323 × (OFD – 120.6322)^2 + 0.000000001794019 × exp(ATD – 120.1552) + 0.0005946974 × (APAD – 121.2069) – 0.0000210137 × (APAD – 121.2069)^2 – 0.000003318 × (APAD – 121.2069)^3, where EFW is the estimated fetal weight, BPD is the biparietal diameter, OFD is the occipitofrontal diameter, ATD is the abdominal transverse diameter, and APAD is the abdominal anteroposterior diameter. The new formula proved to be superior to other established equations, showing the lowest mean absolute percentage error (MAE 2.506), the smallest variance regarding the signed percentage error (SPE) (SD 3.376), and the best distribution of absolute percentage errors within prespecified error bounds.

Conclusion: This new formula significantly improves weight estimation in fetuses with extreme macrosomia.

Zusammenfassung

Ziel: Ziel war die Entwicklung und Evaluierung einer neuen sonografischen Gewichtsschätzungsformel für Feten mit stark ausgeprägter Makrosomie (≥ 4,500 g)

Material und Methoden: Ein spezielles statistisches Verfahren („gradient boosting mit component-wise P-splines”) wurde an einer Gruppe von 174 Feten mit einem Geburtsgewicht ≥ 4500 g angewendet. Eine komplette sonografische Biometrie erfolgte bei jedem Fetus innerhalb von 7 Tagen vor Entbindung. Ausschlusskriterien waren Mehrlinge, intrauteriner Fruchttod und größere strukturelle oder chromosomale Anomalien. Mithilfe der Daten wurde eine neue Formel zur sonografischen Gewichtsschätzung entwickelt und mit anderen gängigen Formeln verglichen.

Ergebnisse: Die Berechnungen ergaben folgende Formel: log10 (EFW) = 3.6687781710 – 0.0003230278 × (BPD – 100.4080) – 0.0000843433 × (BPD – 100.4080)^2 + 0.0007281281 × (OFD – 120.6322) + 0.0000664323 × (OFD – 120.6322)^2 + 0.000000001794019 × exp(ATD – 120.1552) + 0.0005946974 × (APAD – 121.2069) – 0.0000210137 × (APAD – 121.2069)^2 – 0.000003318 × (APAD – 121.2069)^3. Im Vergleich zu anderen Formeln zeigte die neue Formel den signifikant besten absoluten Fehler (MAE 2.506), die kleinste Varianz hinsichtlich des relativen Fehlers (SD 3.376), und den höchsten Prozentsatz an Gewichtsschätzungen innerhalb vorgegebener Fehlergrenzen.

Schlussfolgerung: Die neuentwickelte Formel ermöglicht eine deutlich genauere Gewichtsschätzung bei Feten mit stark ausgeprägter Makrosomie.

 
  • References

  • 1 Patterson RM. Estimation of fetal weight during labor. Obstet Gynecol 1985; 65: 330-332
  • 2 Dietz HP. Childbirth-related Pelvic Floor Trauma. Geburtshilfe Und Frauenheilkunde 2010; 70: 969-978
  • 3 Brieger GM, Rogers MS, Rushton AW et al. Are Hong Kong babies getting bigger?. Int J Gynaecol Obstet 1997; 57: 267-271
  • 4 Orskou J, Kesmodel U, Henriksen TB et al. An increasing proportion of infants weigh more than 4000 grams at birth. Acta Obstet Gynecol Scand 2001; 80: 931-936
  • 5 Boulet SL, Alexander GR, Salihu HM et al. Macrosomic births in the united states: determinants, outcomes, and proposed grades of risk. Am J Obstet Gynecol 2003; 188: 1372-1378
  • 6 Ecker JL, Greenberg JA, Norwitz ER et al. Birth weight as a predictor of brachial plexus injury. Obstet Gynecol 1997; 89: 643-647
  • 7 Gilbert WM, Nesbitt TS, Danielsen B. Associated factors in 1611 cases of brachial plexus injury. Obstet Gynecol 1999; 93: 536-540
  • 8 Peleg D, Hasnin J, Shalev E. Fractured clavicle and Erb's palsy unrelated to birth trauma. Am J Obstet Gynecol 1997; 177: 1038-1040
  • 9 ACOG Practice Bulletin No. 58. Ultrasonography in pregnancy. Obstet Gynecol 2004; 104: 1449-1458
  • 10 Dudley NJ. A systematic review of the ultrasound estimation of fetal weight. Ultrasound Obstet Gynecol 2005; 25: 80-89
  • 11 Kehl S, Korber C, Hart N et al. New Sonographic Method for Fetuses with a Large Abdominal Circumference Improves Fetal Weight Estimation. Ultraschall in Med 2010; epub ahead of print
  • 12 Kehl S, Korber C, Hart N et al. New Sonographic Method for Fetuses with Small Abdominal Circumference Improves Fetal Weight Estimation. Ultraschall in Med 2011; epub ahead of print
  • 13 Faschingbauer F, Voigt F, Goecke TW et al. Fetal Weight Estimation in Extreme Macrosomia (≥4,500g): Comparison of 10 Formulas. Ultraschall in Med 2011; epub ahead of print
  • 14 Nahum GG, Stanislaw H, Huffaker BJ. Accurate prediction of term birth weight from prospectively measurable maternal characteristics. J Reprod Med 1999; 44: 705-712
  • 15 Hart NC, Hilbert A, Meurer B et al. Macrosomia: a new formula for optimized fetal weight estimation. Ultrasound Obstet Gynecol 35: 42-47
  • 16 Ben-Haroush A, Yogev Y, Hod M. Fetal weight estimation in diabetic pregnancies and suspected fetal macrosomia. J Perinat Med 2004; 32: 113-121
  • 17 Eichhorn KH, Schramm T, Bald R et al. DEGUM grade I quality standards in obstetric ultrasound diagnosis during the 19th-22nd week of pregnancy. Ultraschall in Med 2006; 27: 185-187
  • 18 Merz E, Eichhorn KH, Hansmann M et al. Quality demands on continuing differential diagnostic sonography in prenatal diagnostics (DEGUM stage II) during the 18th to 22nd weeks of gestation. Ultraschall in Med 2002; 23: 11-12
  • 19 Bühlmann P, Hothorn T. Boosting algorithms: Regularization, prediction and model fitting (with discussion). Statistical Science 2007; 22: 477-522
  • 20 Schmid M, Hothorn T. Boosting additive models using component-wise P-splines. Computational Statistics and Data Analysis 2008; 53: 298-311
  • 21 Schild RL, Maringa M, Siemer J et al. Weight estimation by three-dimensional ultrasound imaging in the small fetus. Ultrasound Obstet Gynecol 2008; 32: 168-175
  • 22 Whittingham MJ, Bradbury R, Freckelton R. Why do we still use stepwise modelling in ecology and behaviour?. Journal of Animal Ecology 2006; 75: 1182-1189
  • 23 Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd edn. New York: Springer; 2009
  • 24 RDevelopmentCoreTeam. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2010
  • 25 Hothorn T, Bühlmann P, Kneib T et al. mboost: Model-Based Boosting. R package version 20-10 2011
  • 26 Hollander M, Wolfe D. Nonparametric Statistical Methods. 2nd ed. New York, NY: John Wiley & Sons; 1999
  • 27 Snedecor GW, Cochran WG. Statistical Methods. Iowa State University Press: Ames; 1989
  • 28 Benacerraf BR, Gelman R, Frigoletto Jr FD . Sonographically estimated fetal weights: accuracy and limitation. Am J Obstet Gynecol 1988; 159: 1118-1121
  • 29 Deter RL, Hadlock FP. Use of ultrasound in the detection of macrosomia: a review. J Clin Ultrasound 1985; 13: 519-524
  • 30 Miller Jr JM , Kissling GA, Brown HL et al. Estimated fetal weight: applicability to small- and large-for-gestational-age fetus. J Clin Ultrasound 1988; 16: 95-97
  • 31 Mongelli M, Gardosi J. Gestation-adjusted projection of estimated fetal weight. Acta Obstet Gynecol Scand 1996; 75: 28-31
  • 32 Hoopmann M, Abele H, Wagner N et al. Performance of 36 different weight estimation formulae in fetuses with macrosomia. Fetal Diagn Ther 2010; 27: 204-213
  • 33 Melamed N, Yogev Y, Meizner I et al. Sonographic fetal weight estimation: which model should be used?. J Ultrasound Med 2009; 28: 617-629
  • 34 Rosati P, Arduini M, Giri C et al. Ultrasonographic weight estimation in large for gestational age fetuses: a comparison of 17 sonographic formulas and four models algorithms. J Matern Fetal Neonatal Med 23: 675-680
  • 35 Abramowicz JS, Sherer DM, Bar-Tov E et al. The cheek-to-cheek diameter in the ultrasonographic assessment of fetal growth. Am J Obstet Gynecol 1991; 165: 846-852
  • 36 Halaska MG, Vlk R, Feldmar P et al. Predicting term birth weight using ultrasound and maternal characteristics. Eur J Obstet Gynecol Reprod Biol 2006; 128: 231-235
  • 37 Favre R, Bader AM, Nisand G. Prospective study on fetal weight estimation using limb circumferences obtained by three-dimensional ultrasound. Ultrasound Obstet Gynecol 1995; 6: 140-144
  • 38 Winn HN, Rauk PN, Petrie RH. Use of the fetal chest in estimating fetal weight. Am J Obstet Gynecol 1992; 167: 448-450
  • 39 Petrikovsky BM, Oleschuk C, Lesser M et al. Prediction of fetal macrosomia using sonographically measured abdominal subcutaneous tissue thickness. J Clin Ultrasound 1997; 25: 378-382
  • 40 Sood AK, Yancey M, Richards D. Prediction of fetal macrosomia using humeral soft tissue thickness. Obstet Gynecol 1995; 85: 937-940
  • 41 Rotmensch S, Celentano C, Liberati M et al. Screening efficacy of the subcutaneous tissue width/femur length ratio for fetal macrosomia in the non-diabetic pregnancy. Ultrasound Obstet Gynecol 1999; 13: 340-344
  • 42 Hasenoehrl G, Pohlhammer A, Gruber R et al. Fetal weight estimation by 2D and 3D ultrasound: comparison of six formulas. Ultraschall in Med 2009; 30: 585-590
  • 43 Hadlock FP, Harrist RB, Sharman RS et al. Estimation of fetal weight with the use of head, body, and femur measurements – a prospective study. Am J Obstet Gynecol 1985; 151: 333-337
  • 44 Merz E, Lieser H, Schicketanz KH et al. Intrauterine fetal weight assessment using ultrasound. A comparison of several weight assessment methods and development of a new formula for the determination of fetal weight. Ultraschall in Med 1988; 9: 15-24
  • 45 Schild RL, Sachs C, Fimmers R et al. Sex-specific fetal weight prediction by ultrasound. Ultrasound Obstet Gynecol 2004; 23: 30-35
  • 46 Schillinger H, Muller R, Wode J et al. Intrauterine weight determination of the fetus using ultrasonics. Arch Gynakol 1975; 219: 399-401
  • 47 Shepard MJ, Richards VA, Berkowitz RL et al. An evaluation of two equations for predicting fetal weight by ultrasound. Am J Obstet Gynecol 1982; 142: 47-54
  • 48 Shinozuka N, Okai T, Kohzuma S et al. Formulas for fetal weight estimation by ultrasound measurements based on neonatal specific gravities and volumes. Am J Obstet Gynecol 1987; 157: 1140-1145
  • 49 Warsof SL, Gohari P, Berkowitz RL et al. The estimation of fetal weight by computer-assisted analysis. Am J Obstet Gynecol 1977; 128: 881-892