Ultraschall Med 2013; 34(1): 51-57
DOI: 10.1055/s-0032-1313083
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Transtemporal Ultrasound Application Potentially Elevates Brain Temperature: Results of an Anthropomorphic Skull Model

Transtemporaler Ultraschall erhöht potentiell die zerebrale Temperatur: Daten eines anthropomorphen Schädelmodells
S. Pfaffenberger
1   Department of Internal Medicine II, Division of Cardiology, Medical University Vienna , Austria
,
E. Vyskocil
1   Department of Internal Medicine II, Division of Cardiology, Medical University Vienna , Austria
,
C. Kollmann
2   Center for Medical Physics and Biomedical Engineering, MUW, Austria
,
E. Unger
2   Center for Medical Physics and Biomedical Engineering, MUW, Austria
,
C. Kaun
1   Department of Internal Medicine II, Division of Cardiology, Medical University Vienna , Austria
,
S. Kastl
1   Department of Internal Medicine II, Division of Cardiology, Medical University Vienna , Austria
,
C. Woeber
3   Department of Neurology, Medical University Vienna, Austria
,
G. Nawratil
4   Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Austria
,
K. Huber
7   3rd Medical Department for Cardiology and Emergency Medicine, Wilhelminenhospital, Vienna, Austria
,
G. Maurer
1   Department of Internal Medicine II, Division of Cardiology, Medical University Vienna , Austria
,
M. Gottsauner-Wolf*
1   Department of Internal Medicine II, Division of Cardiology, Medical University Vienna , Austria
,
J. Wojta*
1   Department of Internal Medicine II, Division of Cardiology, Medical University Vienna , Austria
› Author Affiliations
Further Information

Publication History

26 March 2012

22 June 2012

Publication Date:
07 August 2012 (online)

Abstract

Purpose: Transtemporal sonothrombolysis is a tool for a more effective treatment in acute stroke patients. However, some reports revealed side effects, which might be potentially connected to temperature elevation. To gain better insight into cerebral temperature changes during transtemporal sonication, diagnostic and therapeutic ultrasound (US) applications were evaluated using an anthropomorphic skull model.

Materials and Methods: The impact of diagnostic (PW-Doppler, 1.8-MHz, 0.11 W/cm², TIC 1.2) and therapeutic (1-MHz and 3-MHz, 0.07 – 0.71 W/cm², continuous and pulsed mode) US application on temperature changes was evaluated at the level of muscle/temporal bone (TB), TB/brain, brain and at the middle cerebral artery (MCA) using 4 miniature thermocouples along the US beam. Sonication lasted 120 minutes.

Results: Diagnostic ultrasound revealed a maximum temperature increase of 1.45°/0.60°/0.39°/0.41°C (muscle/TB, TB/brain, brain, MCA) after 120 minutes. Therapeutic-1-MHz ultrasound raised temperature by 4.33°/2.02°/1.05 °C/0.81°C (pulsed 1:20) and by 10.38°/4.95°/2.43°/2.08°C (pulsed 1:5) over 120 minutes. Therapeutic-3-MHz US raised temperature by 4.89°/2.56°/1.24/1.25°C (pulsed 1:20) and by 14.77°/6.59°/3.56°/2.86°C (pulsed 1:5) over 120 minutes, respectively. Continuous application of therapeutic US (1-MHz and 3-MHz) led to a temperature increase of 13.86°/3.63°/1.66°/1.48°C and 17.09°/4.28°/1.38/0.99°C within 3 minutes.

Conclusion: Diagnostic PW-Doppler showed only a moderate temperature increase and can be considered as safe. Therapeutic sonication is very powerful in delivering energy so that even pulsed application modes resulted in significant and potentially harmful temperature increases.

Zusammenfassung

Ziel: Transtemporale Sonothrombolyse ist eine nicht invasive Technik zur effizienteren Behandlung bei Patienten mit ischämischen Insult. Allerdings gab es Berichte über Nebenwirkungen, welche möglicherweise in Zusammenhang mit zerebraler Temperaturerhöhung stehen könnten. Um einen besseren Einblick in Temperaturveränderungen bei transtemporaler Beschallung zu bekommen, wurden diagnostischer und therapeutischer Ultraschall (US) anhand eines anthropomorphen Schädelmodells untersucht.

Material und Methoden: Der Einfluss von diagnostischem (PW-Doppler, 1,8 MHz, 0,11 W/cm², TIC 1,2) und therapeutischen (1 MHz und 3 MHz, 0,07 – 0,71 W/cm², kontinuierlicher und gepulster Modus) US wurde entlang der transtemporalen Schallachse mittels 4 Miniatur-Thermoelementen (Muskulatur/Temporalknochen [TK], TK/Gehirn, im Gehirn und an der Arteria cerebri media [MCA]) über 120 Minuten (min) untersucht.

Ergebnisse: Diagnostischer US ergab einen maximalen Temperaturanstieg von 1,45°/0,60°/0,39°/0,41°C (Muskulatur/TK, TK/Gehirn, Gehirn, MCA). Therapeutischer 1MHz-US zeigte eine maximale Temperaturerhöhung von 4,33°/2,02°/1,05 °C/0,81°C (gepulst 1:20) und von 10,38°/4,95°/2,43°/2,08°C (gepulst 1:5). Therapeutischer 3MHz-US ergab einen Anstieg von 4,89°/2,56°/1,24/1,25°C (gepulst 1:20) und von 14,77°/6,59°/3,56°/2,86°C (gepulst 1:5). Kontinuierliche Applikation von therapeutischem US (1 MHz und 3 MHz) zeigte einen Temperaturanstieg von 13,86°/3,63°/1,66°/1,48°C bzw. 17,09°/4,28°/1,38/0,99 °C bereits nach 3 min.

Schlussfolgerung: Diagnostischer PW-Doppler ergab lediglich einen moderaten Temperaturanstieg und kann als sicher eingeschätzt werden. Bei Beschallung mit therapeutischen Schallköpfen wird viel Energie transportiert und in Wärme umgesetzt, sodass es auch im gepulsten Modus zu signifikanten und potenziell gefährlichen Temperaturanstiegen kommt.

* Both authors contributed equally to this study.


 
  • References

  • 1 Alexandrov AV, Demchuk AM, Felberg RA et al. High rate of complete recanalization and dramatic clinical recovery during tPA infusion when continuously monitored with 2-MHz transcranial doppler monitoring. Stroke 2000; 31: 610-614
  • 2 Alexandrov AV, Molina CA, Grotta JC et al. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med 2004; 351: 2170-2178
  • 3 Cintas P, Le Traon AP, Larrue V. High rate of recanalization of middle cerebral artery occlusion during 2-MHz transcranial color-coded Doppler continuous monitoring without thrombolytic drug. Stroke 2002; 33: 626-628
  • 4 Eggers J, Koch B, Meyer K et al. Effect of ultrasound on thrombolysis of middle cerebral artery occlusion. Ann Neurol 2003; 53: 797-800
  • 5 Pfaffenberger S, Devcic-Kuhar B, Kollmann C et al. Can a commercial diagnostic ultrasound device accelerate thrombolysis? An in vitro skull model. Stroke 2005; 36: 124-128
  • 6 Saguchi T, Onoue H, Urashima M et al. Effective and safe conditions of low-frequency transcranial ultrasonic thrombolysis for acute ischemic stroke: neurologic and histologic evaluation in a rat middle cerebral artery stroke model. Stroke 2008; 39: 1007-1011
  • 7 Daffertshofer M, Gass A, Ringleb P et al. Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator: results of a phase II clinical trial. Stroke 2005; 36: 1441-1446
  • 8 Nedelmann M, Reuter P, Walberer M et al. Detrimental effects of 60 kHz sonothrombolysis in rats with middle cerebral artery occlusion. Ultrasound Med Biol 2008; 34: 2019-2027
  • 9 Wilhelm-Schwenkmezger T, Pittermann P, Zajonz K et al. Therapeutic application of 20-kHz transcranial ultrasound in an embolic middle cerebral artery occlusion model in rats: safety concerns. Stroke 2007; 38: 1031-1035
  • 10 Schneider F, Gerriets T, Walberer M et al. Brain edema and intracerebral necrosis caused by transcranial low-frequency 20-kHz ultrasound: a safety study in rats. Stroke 2006; 37: 1301-1306
  • 11 Reinhard M, Hetzel A, Kruger S et al. Blood-brain barrier disruption by low-frequency ultrasound. Stroke 2006; 37: 1546-1548
  • 12 Fatar M, Stroick M, Griebe M et al. Brain temperature during 340-kHz pulsed ultrasound insonation: a safety study for sonothrombolysis. Stroke 2006; 37: 1883-1887
  • 13 Barnett SB. Intracranial temperature elevation from diagnostic ultrasound. Ultrasound Med Biol 2001; 27: 883-888
  • 14 Schlosser HG, Doepp F, Nolte CH et al. Does routine transcranial duplex ultrasound heat up the patient brain?. Ultraschall in Med 2009; 30: 37-41
  • 15 Koch C. Thermal effects of ultrasound. Ultraschall in Med 2001; 22: 146-152
  • 16 Teirlinck CJ, Bezemer RA, Kollmann C et al. Development of an example flow test object and comparison of five of these test objects, constructed in various laboratories. Ultrasonics 1998; 36: 653-660
  • 17 Kollmann C, Bezemer RA, Fredfeldt KE et al. [A test object for quality control of the instrument for doppler (duplex) ultrasonography, based on the Draft IEC 61685 Standard]. Ultraschall in Med 1999; 20: 248-257
  • 18 Wu J, Cubberley F, Gormley G et al. Temperature rise generated by diagnostic ultrasound in a transcranial phantom. Ultrasound Med Biol 1995; 21: 561-568
  • 19 O'Brien Jr WD, Deng CX, Harris GR et al. The risk of exposure to diagnostic ultrasound in postnatal subjects: thermal effects. J Ultrasound Med 2008; 27: 517-535 ; quiz 537-540
  • 20 Stoll A, Greene L. Relationship between pain and tissue damage due to thermal radiation. J Appl Physiol 1959; 14: 373-382
  • 21 Meshorer A, Prionas SD, Fajardo LF et al. The effects of hyperthermia on normal mesenchymal tissues. Application of a histologic grading system. Arch Pathol Lab Med 1983; 107: 328-334
  • 22 Barnett SB, Ter Haar GR, Ziskin MC et al. International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine. Ultrasound Med Biol 2000; 26: 355-366
  • 23 Barnett SB, ter Haar GR, Ziskin MC et al. Current status of research on biophysical effects of ultrasound. Ultrasound Med Biol 1994; 20: 205-218
  • 24 Nakagawa K, Ishibashi T, Matsushima M et al. Does long-term continuous transcranial Doppler monitoring require a pause for safer use?. Cerebrovasc Dis 2007; 24: 27-34
  • 25 Nedelmann M, Ritschel N, Doenges S et al. Combined contrast-enhanced ultrasound and rt-PA treatment is safe and improves impaired microcirculation after reperfusion of middle cerebral artery occlusion. J Cereb Blood Flow Metab 2010; 30: 1712-1720
  • 26 Duggan PM, Murcott MF, McPhee AJ et al. The influence of variations in blood flow on pulsed doppler ultrasonic heating of the cerebral cortex of the neonatal pig. Ultrasound Med Biol 2000; 26: 647-654