Der Nuklearmediziner 2012; 35(02): 75-81
DOI: 10.1055/s-0032-1314788
Neurodegenerative Erkrankungen
© Georg Thieme Verlag KG Stuttgart · New York

FDG-PET in der Demenzdiagnostik

FDG-PET-Imaging for Diagnosis of Dementia
S. Förster
1   Klinik und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München
,
A. Drzezga
1   Klinik und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München
› Author Affiliations
Further Information

Publication History

Publication Date:
12 July 2012 (online)

Zusammenfassung

Sozioökonomisch gesehen ist die zunehmende Prävalenz der neurodegenerativen Demenzerkrankungen und insbesondere der Alzheimer-Demenz (AD) aufgrund der Zunahme der Lebenserwartung unserer alternden Bevölkerung eines der ernsthaftesten Probleme. Insofern besteht künftig im Rahmen zu entwickelnder neuer Therapiestrategien ein zunehmender Bedarf an Biomarkern, die eine Frühdiagnose der Demenzerkrankungen zulassen und das in Stadien bevor neuronale Schädigungen eingetreten sind. Für die AD, als häufigste Demenzform, ist bekannt das Alzheimer-assozierte neuropathologische Veränderungen im Gehirn bereits Jahrzehnte vor Auftreten erster klinischer Symptome auftreten, was bedeutet, dass klinische kognitive Biomarker, auf denen derzeit die Diagnose einer Demenzerkrankung basiert, es nicht erlauben werden, Frühdiagnostik in präklinischen bzw. asymptomatischen Erkrankungsstadien zu betreiben. Daher besteht ein offensichtlicher Bedarf an zusätzlichen, sensitiveren Biomarkern, wie sie u. a. in der Bildgebung zu finden sind. Die [18F]FDG-PET ist als Surrogatmarker der neuronalen Funktion, was die Bildgebung betrifft, die am besten validierte Methode, die nicht-invasiv eine frühe und akkurate Bestimmung AD-Pathologie-basierter neuronaler Funktionsstörungen im Hinblick auf die Vorhersagekraft einer Alzheimer-Demenz zulässt. Es existieren derzeit keine vergleichbar hochwertigen, über mehrere Jahrzehnte systematisch erhobenen Daten, was die Hirnbildgebung angeht. Ziel dieses Artikels ist es, die für die unterschiedlichen neurodegenerativen Demenzerkrankungen jeweils typischen [18F]FDG-PET-Veränderungsmuster aufzuzeigen sowie den Stellenwert der [18F]FDG-PET in der Frühdiagnostik, Differenzialdiagnose und in der Verlaufskontrolle dieser Erkrankungen darzulegen.

Abstract

Due to an increase of life expectancy in our aging population neurodegenerative dementia diseases and especially Alzheimer’s Dementia (AD) will form one of the most serious medical and social economical problems in the upcoming decades. Therefore there is a need for biomarkers, which allow an early, preclinical diagnosis of neurodegenerative dementia before neuronal loss is evident in order not to delay new treatment strategies. In AD, the most common form of dementia, Alzheimer-associated neuropathological brain changes occur decades before the onset of first clinical symptoms, what implies that the currently established clinical cognitive biomarkers will not allow for an early diagnosis in preclinical/asymptomatical disease stages. This limitation can be overcome by more sensitive i.e. brain imaging biomarkers, which may complement clinical diagnostic work-up. [18F]FDG-PET, a surrogate marker of neuronal function, is a uniquely well-validated and highly sensitive method for the non-invasive detection of AD-based functional neuronal changes and has a high predictive value concerning conversions in AD.

Aim of the current article is to present the typical [18F]FDG-PET brain metabolic findings for each of the most common neurodegenerative dementias and to discuss the value of [18F]FDG-PET in the early diagnosis, differential diagnosis and follow-up of these diseases.·

 
  • Literatur

  • 1 Alafuzoff I. The pathology of dementias: an overview. Acta Neurol Scand Suppl 1992; 139: 8-15
  • 2 Bonner MF, Ash S, Grossman M. The new classification of primary progressive aphasia into semantic, logopenic, or nonfluent/agrammatic variants. Curr Neurol Neurosci Rep 2010 10: 484-490
  • 3 Boyle PA, Wilson RS, Aggarwal NT et al. Mild cognitive impairment: risk of Alzheimer disease and rate of cognitive decline. Neurology 2006; 67: 441-445
  • 4 Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239-259
  • 5 de Hevesy G. (Ed.). Radioactive Indicators. 1st ed. Interscience Publishers Inc.; New York: 1948
  • 6 Diehl-Schmid J, Grimmer T, Drzezga A et al. Longitudinal changes of cerebral glucose metabolism in semantic dementia. Dement Geriatr Cogn Disord 2006; 22: 346-351
  • 7 Diehl-Schmid J, Grimmer T, Drzezga A et al. Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol Aging 2007; 28: 42-50
  • 8 Diehl J, Grimmer T, Drzezga A et al. Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol Aging 2004; 25: 1051-1056
  • 9 Drzezga A, Grimmer T, Siebner H et al. Prominent hypometabolism of the right temporoparietal and frontal cortex in two left-handed patients with primary progressive aphasia. J Neurol 2002; 249: 1263-1267
  • 10 Drzezga A, Lautenschlager N, Siebner H et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 2003; 30: 1104-1113
  • 11 Forster S, Buschert VC, Buchholz HG et al. Effects of a 6-month cognitive intervention program on brain metabolism in amnestic mild cognitive impairment and mild Alzheimer’s disease. J Alzheimers Dis 2011; 44: 462-469
  • 12 Forster S, Grimmer T, Miederer I et al. Regional Expansion of Hypometabolism in Alzheimer’s Disease Follows Amyloid Deposition with Temporal Delay. Biol Psychiatry 2012; 71: 792-797
  • 13 Forster S, Teipel S, Zach C et al. FDG-PET mapping the brain substrates of visuo-constructive processing in Alzheimer s disease. J Psychiatr Res 2010; 44: 462-469
  • 14 Foster NL, Heidebrink JL, Clark CM et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain 2007; 130: 2616-2635
  • 15 Hebert LE, Scherr PA, Heidebrink JL et al. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 2003; 60: 1119-1122
  • 16 Herholz K. FDG PET and differential diagnosis of dementia. Alzheimer Dis Assoc Disord 1995; 9: 6-16
  • 17 Herholz K. PET studies in dementia. Ann Nucl Med 2003; 17: 79-89
  • 18 Herholz K, Salmon E, Perani D et al. 2002a. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 2002; 17: 302-316
  • 19 Herholz K, Schopphoff H, Schmidt M et al. Direct comparison of spatially normalized PET and SPECT scans in Alzheimer’s disease. J Nucl Med 2002; 43: 21-26
  • 20 Jagust W, Reed B, Mungas D et al. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia?. Neurology 2007; 69: 871-877
  • 21 Lo RY, Hubbard AE, Shawf LM et al. Longitudinal change of biomarkers in cognitive decline. Arch Neurol 2011; 68: 1257-1266
  • 22 Lopponen M, Raiha I, Isoaho R et al. Diagnosing cognitive impairment and dementia in primary health care – a more active approach is needed. Age Ageing 2003; 32: 606-612
  • 23 Luis CA, Barker WW, Gajaraja K et al. Sensitivity and specificity of three clinical criteria for dementia with Lewy bodies in an autopsy-verified sample. Int J Geriatr Psychiatry 1999; 14: 526-533
  • 24 Mackenzie IR, Shi J, Shaw L et al. Dementia lacking distinctive histology (DLDH) revisited. Acta Neuropathol 2006; 112: 551-559
  • 25 Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 1999; 354: 1155-1163
  • 26 McKhann G, Drachman D, Folstein M et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34: 939-944
  • 27 Mesulam M, Wieneke C, Rogalski E et al. Quantitative template for subtyping primary progressive aphasia. Arch Neurol 2009; 66: 1545-1551
  • 28 Mielke R, Heiss WD. Positron emission tomography for diagnosis of Alzheimer’s disease and vascular dementia. J Neural Transm Suppl 1998; 53: 237-250
  • 29 Minoshima S, Foster NL, Sima AA et al. Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol 2001; 50: 358-365
  • 30 Minoshima S, Frey KA, Koeppe RA et al. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995; 36: 1238-1248
  • 31 Minoshima S, Giordani B, Berent S et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997; 42: 85-94
  • 32 Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 2005; 32: 486-510
  • 33 Mosconi L, Mistur R, Switalski R et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2009; 36: 811-822
  • 34 Neary D, Snowden JS, Gustafson MD et al. 1998. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998; 51: 1546-1554
  • 35 Nestor PJ, Fryer TD, Hodges JR et al. Declarative memory impairments in Alzheimer’s disease and semantic dementia. Neuroimage 2006; 30: 1010-1020
  • 36 Neumann M, Sampathu DM, Kwong LK et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006; 314: 130-133
  • 37 Panegyres PK, Rogers JM, McCarthy M et al. 2009. Fluorodeoxyglucose-positron emission tomography in the differential diagnosis of early-onset dementia: a prospective, community-based study. BMC Neurol 2009; 9: 41-49
  • 38 Petersen RC, Doody R, Kurz A et al. Current concepts in mild cognitive impairment. Arch Neurol 2001; 58: 1985-1992
  • 39 Petersen RC, Smith GE, Waring SC et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56: 303-308
  • 40 Reiman EM, Caselli RJ, Yun LS et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 1996; 334: 752-758
  • 41 Silverman DH, Small GW, Chang CY et al. Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. Jama 2001; 286: 2120-2127
  • 42 Storandt M, Morris JC. Ascertainment bias in the clinical diagnosis of Alzheimer disease. Arch Neurol 2010; 67: 1364-1369
  • 43 Teune LK, Bartels AL, de Jong BM et al. Typical cerebral metabolic patterns in neurodegenerative brain diseases. Mov Disord 2010; 25: 2395-2404
  • 44 Vander Borght T, Minoshima S. Giordani Cerebral metabolic differences in Parkinson’s and Alzheimer’s diseases matched for dementia severity. J Nucl Med 1997; 38: 797-802
  • 45 Varma AR, Snowden JS, Lloyd JJ et al. Evaluation of the NINCDS-ADRDA criteria in the differentiation of Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry 1999; 66: 184-188