Anästhesiol Intensivmed Notfallmed Schmerzther 2012; 47(6): 374-380
DOI: 10.1055/s-0032-1316478
Fachwissen
Anästhesiologie
© Georg Thieme Verlag Stuttgart · New York

Xenonnarkosen – Klinische Besonderheiten, Vor- und Nachteile sowie mögliche Einsatzgebiete

Xenon anaesthesia – Clinical characteristics, benefits and disadvantages and fields of application
Jan Höcker
,
Matthias Grünewald
,
Berthold Bein
Further Information

Publication History

Publication Date:
28 June 2012 (online)

Zusammenfassung

Das Edelgas Xenon kommt in der Summe seiner Eigenschaften dem „idealen Anästhetikum“ sehr nahe. Es gewährleistet eine hohe hämodynamische Stabilität und kurze Aufwachzeiten bei gleichzeitigem Fehlen relevanter Nebenwirkungen. Hauptnachteil ist sein hoher Preis. In tierexperimentellen Studien konnten zusätzlich spezifische organprotektive Effekte nachgewiesen werden, v.a. für Herz und Gehirn. Damit könnte Xenon bei Risikopatienten bzw. spezifischen Eingriffen möglicherweise Vorteile gegenüber anderen Anästhetika zeigen, die seine klinische Verwendung sinnvoll erscheinen lassen.

Abstract

The noble gas xenon provides many characteristics of the 'ideal anaesthetic agent'. Xenon offers outstanding haemodynamic stability and rapid emergence from anaesthesia without relevant side effects or toxity. The major limitation for its application in clinical routine is the high price. Recent studies demonstrated additional protective effects against ischaemic injury in particular for the heart and the brain. Therefore, xenon may be beneficial in a subset of high risk patients or operations and may become a meaningful alternative to other anaesthetics in this population.

Kernaussagen

  • Xenon vereint viele Eigenschaften eines „idealen“ Anästhetikums, u. a. gewährleistet es hohe hämodynamische Stabilität und kurze Aufwachphasen.

  • Zusätzliche spezifische kardioprotektive Effekte lassen Xenon v. a. für kardiovaskuläre Risikopatienten besonders geeignet erscheinen.

  • Neuroprotektive Wirkungen des Xenons könnten zur Reduktion postoperativer neurokognitiver Defizite beitragen bzw. in Kombination mit Hypothermie zur Therapie bei zerebraler Ischämie Vorteile bieten.

  • Klinisch relevante Vorteile des Xenons gegenüber anderen Anästhetika müssen in großen klinischen Studien weiter untersucht werden.

  • Die Verwendung von Xenon erscheint derzeit nur bei speziellen Indikationen und Risikopatienten sinnvoll.

  • Hohe Kosten sind die Hauptlimitation des Einsatzes von Xenon.

Ergänzendes Material

 
  • Literatur

  • 1 Cullen SC, Gross EG. The anesthetic properties of xenon in animals and human beings, with additional observations on krypton. Science 1951; 113: 580-582
  • 2 Nakata Y, Goto T, Morita S. Comparison of inhalation inductions with xenon and sevoflurane. Acta anaesthesiologica Scandinavica 1997; 41: 1157-1161
  • 3 Froeba G, Marx T, Pazhur J et al. Xenon does not trigger malignant hyperthermia in susceptible swine. Anesthesiology 1999; 91: 1047-1052
  • 4 Franks NP, Dickinson R, de Sousa SL et al. How does xenon produce anaesthesia?. Nature 1998; 396: 324-324
  • 5 Salmi E, Laitio RM, Aalto S et al. Xenon does not affect gamma-aminobutyric acid type A receptor binding in humans. Anesth Analg 2008; 106: 129-134
  • 6 Banks P, Franks NP, Dickinson R. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology 2010; 112: 614-622
  • 7 Dickinson R, Peterson BK, Banks P et al. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane: evidence from molecular modeling and electrophysiology. Anesthesiology 2007; 107: 756-767
  • 8 Gruss M, Bushell TJ, Bright DP et al. Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol 2004; 65: 443-452
  • 9 Bantel C, Maze M, Trapp S. Neuronal preconditioning by inhalational anesthetics: evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology 2009; 110: 986-995
  • 10 Suzuki T, Koyama H, Sugimoto M et al. The diverse actions of volatile and gaseous anesthetics on human-cloned 5-hydroxytryptamine3 receptors expressed in Xenopus oocytes. Anesthesiology 2002; 96: 699-704
  • 11 Suzuki T, Ueta K, Sugimoto M et al. Nitrous oxide and xenon inhibit the human (alpha 7)5 nicotinic acetylcholine receptor expressed in Xenopus oocyte. Anesth Analg 2003; 96: 443-448
  • 12 Goto T, Nakata Y, Ishiguro Y et al. Minimum alveolar concentration-awake of Xenon alone and in combination with isoflurane or sevoflurane. Anesthesiology 2000; 93: 1188-1193
  • 13 Nakata Y, Goto T, Ishiguro Y et al. Minimum alveolar concentration (MAC) of xenon with sevoflurane in humans. Anesthesiology 2001; 94: 611-614
  • 14 Goto T, Nakata Y, Morita S. The minimum alveolar concentration of xenon in the elderly is sex-dependent. Anesthesiology 2002; 97: 1129-1132
  • 15 Rossaint R, Reyle-Hahn M, Schulte Am Esch J et al. Multicenter randomized comparison of the efficacy and safety of xenon and isoflurane in patients undergoing elective surgery. Anesthesiology 2003; 98: 6-13
  • 16 Goto T, Saito H, Shinkai M et al. Xenon provides faster emergence from anesthesia than does nitrous oxide-sevoflurane or nitrous oxide-isoflurane. Anesthesiology 1997; 86: 1273-1278
  • 17 Coburn M, Baumert JH, Roertgen D et al. Emergence and early cognitive function in the elderly after xenon or desflurane anaesthesia: a double-blinded randomized controlled trial. Br J Anaesth 2007; 98: 756-762
  • 18 Goto T, Saito H, Nakata Y et al. Emergence times from xenon anaesthesia are independent of the duration of anaesthesia. Br J Anaesth 1997; 79: 595-599
  • 19 Wappler F, Rossaint R, Baumert J et al. Multicenter randomized comparison of xenon and isoflurane on left ventricular function in patients undergoing elective surgery. Anesthesiology 2007; 106: 463-471
  • 20 Iber T, Hecker K, Vagts DA et al. Xenon anesthesia impairs hepatic oxygenation and perfusion in healthy pigs. Minerva anestesiol 2008; 74: 511-519
  • 21 Baumert JH, Hein M, Hecker KE et al. Autonomic cardiac control with xenon anaesthesia in patients at cardiovascular risk. Br J Anaesth 2007; 98: 722-727
  • 22 Baumert JH, Hein M, Hecker KE et al. Xenon or propofol anaesthesia for patients at cardiovascular risk in non-cardiac surgery. Br J Anaesth 2008; 100: 605-611
  • 23 Bein B, Turowski P, Renner J et al. Comparison of xenon-based anaesthesia compared with total intravenous anaesthesia in high risk surgical patients. Anaesthesia 2005; 60: 960-967
  • 24 Roehl AB, Steendijk P, Rossaint R et al. Xenon is not superior to isoflurane on cardiovascular function during experimental acute pulmonary hypertension. Acta anaesthesiologica Scandinavica 2012; 56: 449-458
  • 25 Schaefer W, Meyer PT, Rossaint R et al. Myocardial blood flow during general anesthesia with xenon in humans: a positron emission tomography study. Anesthesiology 2011; 114: 1373-1379
  • 26 Laitio RM, Kaisti KK, Laangsjo JW et al. Effects of xenon anesthesia on cerebral blood flow in humans: a positron emission tomography study. Anesthesiology 2007; 106: 1128-1133
  • 27 Laitio RM, Langsjo JW, Aalto S et al. The effects of xenon anesthesia on the relationship between cerebral glucose metabolism and blood flow in healthy subjects: a positron emission tomography study. Anesth Analg 2009; 108: 593-600
  • 28 Rex S, Schaefer W, Meyer PH et al. Positron emission tomography study of regional cerebral metabolism during general anesthesia with xenon in humans. Anesthesiology 2006; 105: 936-943
  • 29 Weber NC, Toma O, Wolter JI et al. The noble gas xenon induces pharmacological preconditioning in the rat heart in vivo via induction of PKC-epsilon and p38 MAPK. Br J Pharmacol 2005; 144: 123-132
  • 30 Preckel B, Weber NC, Sanders RD et al. Molecular mechanisms transducing the anesthetic, analgesic, and organ-protective actions of xenon. Anesthesiology 2006; 105: 187-197
  • 31 Preckel B, Mullenheim J, Moloschavij A et al. Xenon administration during early reperfusion reduces infarct size after regional ischemia in the rabbit heart in vivo. Anesth Analg 2000; 91: 1327-1332
  • 32 Newman MF, Kirchner JL, Phillips-Bute B et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med 2001; 344: 395-402
  • 33 De Hert SG, Turani F, Mathur S, Stowe DF. Cardioprotection with volatile anesthetics: mechanisms and clinical implications. Anesth Analg 2005; 100: 1584-1593
  • 34 Landoni G, Biondi-Zoccai GG, Zangrillo A et al. Desflurane and sevoflurane in cardiac surgery: a meta-analysis of randomized clinical trials. J Cardiothorac Vasc Anesth 2007; 21: 502-511
  • 35 Ma D, Yang H, Lynch J et al. Xenon attenuates cardiopulmonary bypass-induced neurologic and neurocognitive dysfunction in the rat. Anesthesiology 2003; 98: 690-698
  • 36 Lockwood GG, Franks NP, Downie NA et al. Feasibility and safety of delivering xenon to patients undergoing coronary artery bypass graft surgery while on cardiopulmonary bypass: phase I study. Anesthesiology 2006; 104: 458-465
  • 37 Jungwirth B, Gordan ML, Blobner M et al. Xenon impairs neurocognitive and histologic outcome after cardiopulmonary bypass combined with cerebral air embolism in rats. Anesthesiology 2006; 104: 770-776
  • 38 Jungwirth B, Gordan ML, Kellermann K et al. Xenon administration immediately after but not before or during cardiopulmonary bypass with cerebral air embolism impairs cerebral outcome in rats. Eur J Anaesthesiol 2011; 28: 882-887
  • 39 Choi DW, Koh JY, Peters S. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci 1988; 8: 185-196
  • 40 Dickinson R, Franks NP. Bench-to-bedside review: Molecular pharmacology and clinical use of inert gases in anesthesia and neuroprotection. Crit Care 2010; 14: 229-229
  • 41 Ma D, Wilhelm S, Maze M, Franks NP. Neuroprotective and neurotoxic properties of the 'inert' gas, xenon. Br J Anaesth 2002; 89: 739-746
  • 42 Wilhelm S, Ma D, Maze M, Franks NP. Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology 2002; 96: 1485-1491
  • 43 Hobbs C, Thoresen M, Tucker A et al. Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia. Stroke 2008; 39: 1307-1313
  • 44 Ma D, Hossain M, Chow A et al. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Annals of neurology 2005; 58: 182-193
  • 45 Cremer J, Stoppe C, Fahlenkamp AV et al. Early cognitive function, recovery and well-being after sevoflurane and xenon anaesthesia in the elderly: a double-blinded randomized controlled trial. Medical gas research 2011; 1: 9-9
  • 46 Monk TG, Weldon BC, Garvan CW et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 2008; 108: 18-30
  • 47 Höcker J, Stapelfeldt C, Leiendecker J et al. Postoperative neurocognitive dysfunction in elderly patients after xenon versus propofol anesthesia for major noncardiac surgery: a double-blinded randomized controlled pilot study. Anesthesiology 2009; 110: 1068-1076
  • 48 Lachmann B, Armbruster S, Schairer W et al. Safety and efficacy of xenon in routine use as an inhalational anaesthetic. Lancet 1990; 335: 1413-1415
  • 49 Coburn M, Kunitz O, Apfel CC et al. Incidence of postoperative nausea and emetic episodes after xenon anaesthesia compared with propofol-based anaesthesia. Br J Anaesth 2008; 100: 787-791
  • 50 Saito H, Saito M, Goto T, Morita S. Priming of anesthesia circuit with xenon for closed circuit anesthesia. Artificial organs 1997; 21: 70-72
  • 51 Höcker J, Raitschew B, Meybohm P et al. Differences between bispectral index and spectral entropy during xenon anaesthesia: a comparison with propofol anaesthesia. Anaesthesia 2010; 65: 595-600